Skip to main content

On the Development of Experimental Methods for the Determination of Fracture Mechanical Parameters of Ceramics

  • Conference paper
  • First Online:

Abstract

Because of their high yield strength and hardness as well as their brittle fracture characteristics the behavior of cracks in ceramics can be described within the framework of linear elastic fracture mechanics. For fracture toughness (K Ic) measurements the test techniques which were developed for metallic materials are unfavorable, as an economical preparation is impossible in the case of ceramic materials. Therefore simple geometries e.g. bend bars became a preferred specimen shape for K Ic measurements. A major difficulty arises when sharp and well-defined pre-cracks for crack propagation studies have to be created. Several methods to overcome this problem are introduced. Additionally, methods to investigate small amounts of material are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ashby MF, Jones DRH (1986) Engineering materials 2. Pergamon Press, Oxford

    Google Scholar 

  2. Ashby MF (2010) Materials selection in mechanical design. Butterworth-Heinemann, Oxford

    Google Scholar 

  3. Danzer R, Lube T, Morrell R, Supancic P (2013) Mechanical properties of ceramics. In: Somiya S (ed) Handbook of advanced ceramics, 2nd edn. Elsevier, Amsterdam, pp 609–632

    Chapter  Google Scholar 

  4. Danzer R (2007) Fracture mechanics of ceramics—a short introduction. Key Eng Mat 333:77–86. doi:10.4028/www.scientific.net/KEM.333.77

    Article  Google Scholar 

  5. Griffith AA (1920) The phenomenon of rupture and flow in solids. Philos Trans R Soc Lond A221:163–198

    Google Scholar 

  6. Irwin GR (1958) Fracture. In: Flügge S (ed) Handbuch der Physik, vol 6. Springer, Berlin, pp 551–589

    Google Scholar 

  7. Ashby MF, Jones DRH (1980) Engineering materials 1. International series on materials science and technology. Pergamon Press, Oxford

    Google Scholar 

  8. Gross D, Seelig T (2006) Fracture mechanics. Mechanical engineering series. Springer, Berlin

    Google Scholar 

  9. Tada H, Paris P, Irwin GR (1985) The stress analysis handbook. Del Research Corporation, St. Louis

    Google Scholar 

  10. Murakami Y (1986) The stress intensity factor handbook. Pergamon Press, New York

    Google Scholar 

  11. Munz D, Fett T (1999) Ceramics. Springer series in materials science, vol 36. Springer, Berlin

    Google Scholar 

  12. Danzer R (1992) A general strength distribution function for brittle materials. J Eur Ceram Soc 10:461–472

    Article  Google Scholar 

  13. Jayatilaka AdS, Trustrum K (1977) Statistical approach to brittle fracture. J Mater Sci 12:1426–1430

    Article  Google Scholar 

  14. Evans AG (1982) Structural reliability: a process-dependent phenomenon. J Am Ceram Soc 65(3):127–137

    Article  Google Scholar 

  15. Danzer R, Lube T, Supancic P, Damani R (2008) Fracture of ceramics. Adv Eng Mater 10(4):275–298. doi:10.1002/adem.200700347

    Article  Google Scholar 

  16. Weibull W (1939) A statistical theory of the strength of materials, vol 151. Ingeniörsvetenskapsakademiens Handlingar 151. Generalstabens Litografiska Anstalts Förlag, Stockholm

    Google Scholar 

  17. Danzer R (2014) On the relationship between ceramic strength and the requirements for mechanical design. J Eur Ceram Soc 34:3435–3460. doi:10.1016/j.jeurceramsoc.2014.04.026

    Article  Google Scholar 

  18. Pfeiffer W, Hollstein T (1997) Influrence of grinding parameters on strength-dominating near-surface characteristics of silicon nitride ceramics. J Eur Ceram Soc 17:487–494

    Article  Google Scholar 

  19. Becher PF (1991) Microstructural design of toughened ceramics. J Am Ceram Soc 74(2):222–269

    Article  Google Scholar 

  20. Evans AG (1990) Perspective on the development of high-toughness ceramics. J Am Ceram Soc 73(2):187–206

    Article  Google Scholar 

  21. Swanson PL, Fairbanks CJ, Lawn BR, Mai Y-M, Hockey BJ (1987) Crack-interface grain bridging as a fracture resistance mechanism in ceramics: I. Experimental study on alumina. J Am Ceram Soc 70:279–289

    Article  Google Scholar 

  22. Faber KT, Evans AG (1983) Crack deflection processes—II: experiments. Acta Metall 31(4):577–584

    Article  Google Scholar 

  23. Faber KT, Evans AG (1983) Crack deflection processes—I: theory. Acta Metall 31(4):565–576

    Article  Google Scholar 

  24. Wachtman JB (1996) Mechanical properties of ceramics. Wiley-Interscience, New York

    Google Scholar 

  25. Fünfschilling S, Fett T, Hoffmann MJ, Oberacker R, Schwind T, Wippler J, Böhlke T, Özcoban H, Schneider GA, Becher PF, Kruzic JJ (2011) Mechanisms of toughening in silicon nitrides: the roles of crack bridging and microstructure. Acta Mater 59:3978–3989

    Article  Google Scholar 

  26. ASTM E399 (2005) Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials

    Google Scholar 

  27. Gilman IJ (1960) Direct measurements of surface energies of crystals. J Appl Phys 31(12):2208–2218

    Article  Google Scholar 

  28. Evans AG (1974) Fracture mechanics determination. In: Bradt RC, Hasselman DPH, Lange FF (eds) Concepts, flaws and fractography, vol 1. Fracture mechanics of ceramics. Plenum, New York, pp 17–47

    Google Scholar 

  29. Wiederhorn SM (1967) Influence of water vapour on crack propagation in soda-lime glass. J Am Ceram Soc 50:407–414

    Article  Google Scholar 

  30. Danzer R (1994) Sub-critical crack growth in ceramics. In: Cahn RW, Brook R (eds) Encyclopedia of advanced materials, vol 4. Pergamon Press, Oxford, pp 2693–2698

    Google Scholar 

  31. Hannink RHJ, Kelly PM, Muddle BC (2000) Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc 83(3):461–487

    Article  Google Scholar 

  32. Warren R, Johannesson B (1984) Creation of stable cracks in hardmetals using ‘bridge’ indentation. Powder Metall 27(1):25–29

    Article  Google Scholar 

  33. Nose T, Fujii T (1988) Evaluation of fracture toughness for ceramic materials by a single-edge-precracked-beam method. J Am Ceram Soc 71(5):328–333

    Article  Google Scholar 

  34. Ray AK (1998) A new technique for precracking ceramic specimens in fatigue and fracture. J Eur Ceram Soc 18:1655–1662

    Article  Google Scholar 

  35. Fett T, Munz D, Thun G (2001) A toughness test device with opposite roller loading. Eng Fract Mech 68(1):29–38

    Article  Google Scholar 

  36. Morrell R, Parfitt M (2005) A stiff facility for controlled pre-cracking in fracture toughness tests. Measurement note DEPC (MN) 034. NPL, Teddington

    Google Scholar 

  37. Primas RJ, Gstrein R (1997) ESIS TC6 round robin on fracture toughness. Fatigue Fract Eng Mater Struct 20(4):513–532. doi:10.1111/j.1460-2695.1997.tb00284.x

    Article  Google Scholar 

  38. ISO 15732 (2003) Fine ceramics (advanced ceramics, advanced technical ceramics)—test method for fracture toughness of monolithic ceramics at room temperature by single edge precracked beam (SEPB) method

    Google Scholar 

  39. ASTM C1421 (2010) Standard test methods for determination of fracture toughness of advanced ceramics at ambient temperature

    Google Scholar 

  40. Munz D, Bubsey RT, Shannon JI Jr (1980) Fracture toughness determination of Al2O3 using four-point-bend specimens with straight-through and chevron-notches. J Am Ceram Soc 63(5–6):300–305

    Article  Google Scholar 

  41. Sigl LS (1991) On the stability of cracks in flexure specimens. Int J Fract 51(3):241–254

    Google Scholar 

  42. EN 14425-3 (2010) Advanced technical ceramics—test methods for determination of fracture toughness of monolithic ceramics—part 3: Chevron notched beam (CNB) method

    Google Scholar 

  43. ISO 24370 (2005) Fine ceramics (advanced ceramics, advanced technical ceramics)—test method for fracture toughness of monolithic ceramics at room temperature by chevron-notched beam (CNB) method (similar to CEN EN 14425-3)

    Google Scholar 

  44. Lawn BR (1993) Fracture of brittle solids. Cambridge solid state science series, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  45. Pabst RF (1974) Determination of KIc-factors with diamond saw-cuts in ceramic materials. In: Bradt RC, Hasselman DPH, Lange FF (eds) Microstructure, materials and applications, vol 2. Fracture mechanics of ceramics. Plenum, New York, pp 555–565

    Google Scholar 

  46. Nishida T, Hanaki Y, Pezzotti G (1994) Effect of notch-root radius on the fracture toughness of a fine-grained alumina. J Am Ceram Soc 77(2):606–608

    Article  Google Scholar 

  47. Damani R, Gstrein R, Danzer R (1996) Critical notch root radius in SENB-S fracture toughness testing. J Eur Ceram Soc 16:695–702. doi:10.1016/0955-2219(95)00197-2

    Article  Google Scholar 

  48. Kübler J, Danzer R, Fett T, Damani R (1999) Notch width—theory and model. In: Kübler J (ed) Fracture toughness of ceramics using SEVNB method round robin. VAMAS report no. 37, ESIS document D2-99

    Google Scholar 

  49. Damani R, Schuster C, Danzer R (1997) Polished notch modification of SENB-S fracture toughness testing. J Eur Ceram Soc 17(14):1685–1689. doi:10.1016/S0955-2219(97)00024-1

    Article  Google Scholar 

  50. Kübler J (2002) Fracture toughness of ceramics using the SEVNB method: from a preliminary study to a standard test method. In: Salem JA, Jenkins MG, Quinn GD (eds) Fracture resistance testing of monolithic and composite brittle materials, ASTM STP 1409, vol 1409. American Society for Testing and Materials, West Conshohocken, pp 93–106

    Google Scholar 

  51. Kübler J (1999) Fracture toughness of ceramics using the SENVB method: round robin. VAMAS report no. 37

    Google Scholar 

  52. EN 14425-5 (2005) Fine ceramics (advanced ceramics, advanced technical ceramics)—determination of fracture toughness of monolithic ceramics at room temperature by the single-edge vee-notched beam (SEVNB) method

    Google Scholar 

  53. ISO 23146 (2005) Fine ceramics (advanced ceramics, advanced technical ceramics)—test methods for fracture toughness of monolithic ceramics—single-edge V-notch beam (SEVNB) method (similar to CEN EN 14425-5)

    Google Scholar 

  54. Petrovic JJ, Jacobson LA (1976) Controlled surface flaws in hot-pressed SiC. J Am Ceram Soc 59(1–2):34–37

    Article  Google Scholar 

  55. Fett T, Munz D (1987) Knoop-indentations as surface flaws for subcritical crack growth measurements. Eur Appl Res Rep/Nucl Sci Technol 7:1183–1196

    Google Scholar 

  56. Lube T (2001) Indentation crack profiles in silicon nitride. J Eur Ceram Soc 21(2):211–218

    Article  MathSciNet  Google Scholar 

  57. Quinn GD, Salem JA (2003) Effect of lateral cracks on fracture toughness determined by the surface-crack-in-flexure-method. J Am Ceram Soc 85(4):873–880

    Article  Google Scholar 

  58. Quinn GD, Gettings RJ, Kübler J (1994) Fracture toughness by the surface crack in flexure (SCF) method: results of the VAMAS round robin. Ceram Eng Sci Proc 15:846–855

    Article  Google Scholar 

  59. Newman JC, Raju IS (1981) An empirical stress-intensity factor equation for the surface crack. Eng Fract Mech 15(1–2):185–192

    Article  Google Scholar 

  60. Strobl S, Supancic P, Lube T, Danzer R (2012) Surface crack in tension or in bending—a reassessment of the Newman and Raju formula in respect to fracture toughness measurements in brittle materials. J Eur Ceram Soc 32:1491–1501. doi:10.1016/j.jeurceramsoc.2012.01.011

    Article  Google Scholar 

  61. ISO 18756 (2005) Fine ceramics (advanced ceramics, advanced technical ceramics)—determination of fracture toughness of monolithic ceramics at room temperature by the surface crack in flexure (SCF) method (ISO 18756, 2005)

    Google Scholar 

  62. Chantikul P, Anstis GR, Lawn BR, Marshall DB (1981) A critical evaluation of indentation techniques for measuring fracture toughness: II. Strength method. J Am Ceram Soc 64(9):539–543

    Article  Google Scholar 

  63. Awaji H, Kon J-I, Okuda H (1990) The VAMAS fracture toughness test round robin on ceramics. VAMAS technical report 9. Japan Fine Ceramics Centre, Nagoya, Japan

    Google Scholar 

  64. Evans AG, Charles EA (1976) Fracture toughness determination by indentation. J Am Ceram Soc 56(7–8):371–372

    Article  Google Scholar 

  65. Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements. J Am Ceram Soc 64(9):533–538

    Article  Google Scholar 

  66. Ponton CB, Rawlings RD (1989) Vickers indentation fracture toughness test, part 2: application and critical evaluation of standardised indentation toughness equations. Mater Sci Technol 5(10):961–976

    Article  Google Scholar 

  67. Palmqvist S (1962) Rißbildungsarbeit bei Vickers-Eindrücken als Maß für die Zähigkeit von Hartmetallen. Archiv für das Eisenhüttenwesen 33(9):629–634

    Google Scholar 

  68. Quinn GD, Bradt RC (2007) On the Vickers indentation fracture test. J Am Ceram Soc 90(3):673–680

    Article  Google Scholar 

  69. Morrell R (2006) Fracture toughness testing for advanced technical ceramics: internationally agreed good practice. Adv Appl Ceram 105(2):88–98

    Article  Google Scholar 

  70. Miyazaki H, Hyuga H, Hirao K, Ohji T (2007) Comparison of fracture resistance as measured by the indentation fracture method and fracture toughness determined by the single-edge-precracked beam technique using silicon nitride ceramics with different microstructures. J Eur Ceram Soc 27:2347–2354. doi:10.1016/j.jeurceramsoc.2006.09.002

    Article  Google Scholar 

  71. Miyazaki H, Y-i Yoshizawa, Hirao K, Ohji T (2010) Indentation fracture resistance test round robin on silicon nitride ceramics. Ceram Int 36:899–907

    Article  Google Scholar 

  72. ASTM F 2094-08 (2008) standard specification for silicon nitride bearing balls

    Google Scholar 

  73. Supancic P, Danzer R, Witschnig S, Polaczek E, Morrell R (2009) A new test to determine the tensile strength of brittle balls—the notched ball test. J Eur Ceram Soc 29:2447–2459. doi:10.1016/j.jeurceramsoc.2009.02.018

    Article  Google Scholar 

  74. Lube T, Witschnig S, Supancic P, Danzer R, Schöppl O (2012) The notched ball test—charaterisation of surface defects and their influence on strength. In: Varner JR, Wightman M (eds) Fractography of glasses and ceramics VI, vol 230. Ceramic transactions. Wiley, Hoboken, pp 225–234

    Google Scholar 

  75. Strobl S, Supancic P, Lube T, Danzer R (2012) Toughness measurement on ball specimens, part I: theoretical analysis. J Eur Ceram Soc 32:1163–1173. doi:10.1016/j.jeurceramsoc.2011.12.003

    Article  Google Scholar 

  76. Strobl S, Lube T, Schöppl O (2014) Toughness measurement on ball specimens. Part II: experimental procedure and measurement uncertainties. J Eur Ceram Soc 34:1881–1892. doi:10.1016/j.jeurceramsoc.2013.12.052

    Article  Google Scholar 

  77. Börger A, Supancic P, Danzer R (2002) The ball on three balls test for strength testing of brittle discs—stress distribution in the disc. J Eur Ceram Soc 22(8):1425–1436. doi:10.1016/S0955-2219(01)00458-7

    Article  Google Scholar 

  78. Börger A, Supancic P, Danzer R (2004) The ball on three balls test for strength testing of brittle discs—part II: analysis of possible errors in the strength determination. J Eur Ceram Soc 24(10–11):2917–2928. doi:10.1016/j.jeurceramsoc.2003.10.035

    Article  Google Scholar 

  79. Danzer R, Supancic P, Harrer W (2009) Der 4-Kugelversuch zur Ermittlung der biaxialen Biegefestigkeit spröder Werkstoffe. In: Kriegesmann J (ed) Technische keramische Werkstoffe, 113. Ergänzungslieferung, HvB Verlag GbR, Ellerau, pp 1–48

    Google Scholar 

  80. Harrer W, Danzer R, Supancic P, Lube T (2009) Influence of the sample size on the results of B3B-tests. Key Eng Mat  409:176–184. doi:10.4028/www.scientific.net/KEM.409.176

    Article  Google Scholar 

  81. Harrer W, Danzer R, Supancic P, Lube T (2008) The ball on three balls test: strength testing of specimens of different sizes and geometries. Proc. of 10th International Conference of the European Ceramic Society, Baden-Baden

    Google Scholar 

  82. Strobl S, Rasche S, Krautgasser C, Sharova E, Lube T (2014) Fracture toughness testing of small ceramic discs and plates. J Eur Ceram Soc 34(6):1637–1642. doi:10.1016/j.jeurceramsoc.2013.12.021

    Article  Google Scholar 

  83. Rasche S, Strobl S, Kuna M, Bermejo R, Lube T (2014) Determination of strength and fracture toughness of small ceramic discs using the small punch test and the ball-on-three-balls test. Procedia Mater Sci 3:961–966. doi:10.1016/j.mspro.2014.06.156

    Article  Google Scholar 

  84. CEN/TS 14425-1 (2003) Advanced technical ceramics—test methods for determination of fracture toughness of monolithic ceramics—part 1: guide to test method selection

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanja Lube .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Danzer, R., Lube, T., Rasche, S. (2016). On the Development of Experimental Methods for the Determination of Fracture Mechanical Parameters of Ceramics. In: Hütter, G., Zybell, L. (eds) Recent Trends in Fracture and Damage Mechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-21467-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21467-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21466-5

  • Online ISBN: 978-3-319-21467-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics