Skip to main content

Recent Trends in the Development of Gurson’s Model

  • Conference paper
  • First Online:
Recent Trends in Fracture and Damage Mechanics
  • 1972 Accesses

Abstract

The original Gurson model for porous materials has undergone numerous modifications in order to improve its adequacy with experimental or numerical results. In this chapter various modifications of Gurson’s model and models created on the basis of the idea of Gurson’s model are presented. This chapter includes the following issues: (i) development of Gurson’s model, (ii) development of models for nucleation, growth and coalescence of voids and (iii) modification of Gurson’s model for failure prediction under shear deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McClintock FA (1968) A criterion for ductile fracture by the growth of holes. J Appl Mech 35:363–371

    Article  Google Scholar 

  2. Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17:201–217

    Article  Google Scholar 

  3. Needleman A (1972) Void growth in an elastic-plastic medium. J Appl Mech Trans ASME 39:964–970

    Google Scholar 

  4. Mandel J (1964) Contribution théorique à l’étude de l’écrouissage et des lois de l’écoulement plastique. In: Proceedings of the 11th International Congress on Applied Mechanics. Springer, Munich, pp. 502–509

    Google Scholar 

  5. Hill R (1967) The essential structure of constitutive laws for metal composites and polycrystals. J Mech Phys Solids 15:79–95

    Article  Google Scholar 

  6. Gurson A (1977) Continuum theory of ductile rupture by void nucleation and growth—part I, Yield criteria and flow rules for porous ductile media. J Eng Mater Trans ASME 99:2–15

    Article  Google Scholar 

  7. Koplik J, Needleman A (1988) Void growth and coalescence in porous plastic solids. Int J Solids Struct 24:835–853

    Article  Google Scholar 

  8. Hashin Z, Shtrikman S (1962) On some variational principles in anisotropic and nonhomogeneous elasticity. J Mech Phys Solids 10:335–342

    Article  MathSciNet  Google Scholar 

  9. Hashin Z, Shtrikman S (1962) A variational approach to the theory of the elastic behaviour of polycrystals. J Mech Phys Solids 10:343–352

    Article  MathSciNet  Google Scholar 

  10. Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11:127–140

    Article  MathSciNet  Google Scholar 

  11. Tvergaard V (1981) Influence of voids on shear band instabilities under plane strain conditions. Int J Fract 17:389–407

    Article  MATH  Google Scholar 

  12. Tvergaard V (1982) Material failure by void coalescence in localized shear bands. Int J Solids Struct 18:659–672

    Article  MATH  Google Scholar 

  13. Brown LM, Embury JD (1973) The initiation and growth of voids at second-phase particles. In: Proceedings of 3rd International Conference on Strength of Metals and Alloys. Institute of Metals, London, pp. 164–169

    Google Scholar 

  14. Tvergaard V, Needleman A (1984) Analysis of cup-cone fracture in a round tensile bar. Acta Metall 32:157–169

    Article  Google Scholar 

  15. Andersson H (1977) Analysis of a model for void growth and coalescence ahead of a moving crack tip. J Mech Phys Solids 25:217–233

    Article  MATH  Google Scholar 

  16. Zhang ZL (2001) A complete Gurson model. In: Alibadi MH (ed) Nonlinear fracture and damage mechanics. WIT Press, Southampton, pp 223–248

    Google Scholar 

  17. Perrin G, Leblond J-B (1990) Analytical study of a hollow sphere made of plastic porous material and subjected to hydrostatic tension—application to some problems in ductile fracture of metals. Int J Plast 6:677–699

    Article  Google Scholar 

  18. Gao X, Faleskog J, Shih CF (1998) Cell model for nonlinear fracture analysis—II, Fracture-process calibration and verification. Int J Fract 89:374–386

    Article  Google Scholar 

  19. Faleskog J, Gao X, Shih C (1998) Cell model for nonlinear fracture analysis—I, Micromechanics calibration. Int J Fract 89:355–373

    Article  Google Scholar 

  20. Kim J, Gao X, Srivatsan TS (2004) Modeling of void growth in ductile solids: effects of stress triaxiality and initial porosity. Eng Fract Mech 71:379–400

    Article  Google Scholar 

  21. Fritzen F, Forest S, Böhlke T, Kondo D, Kanit T (2012) Computational homogenization of elasto-plastic porous metals. Int J Plast 29:102–119

    Article  Google Scholar 

  22. Mear ME, Hutchinson JW (1985) Influence of yield surface curvature on flow localization in dilatant plasticity. Mech Mater 4:395–407

    Article  Google Scholar 

  23. Richmond O, Smelser RE (1985) Alcoa technical center memorandum, March 7. In: Hom CL, McMeeking RM (eds) Void growth in elastic–plastic materials. J Appl Mech 56:309–317

    Google Scholar 

  24. Sun Y, Wang D (1989) A lower bound approach to the yield loci of porous materials. Acta Mech Sinica 5:399–406

    Google Scholar 

  25. Leblond J-B, Perrin G, Devaux J (1995) An improved Gurson-type model for hardenable ductile metals. Eur J Mech A Solid 14:499–527

    MathSciNet  Google Scholar 

  26. Hommel J-H (2007) Mechanismenorientierte Simulation von Kurzzeitermüdung metallischer Werkstoffe und Strukturen. PhD thesis, Bochum, Germany. Download at http://www-brs.ub.rub.de/netahtml/HSS/Diss/HommelJanHendrik/

  27. Kintzel O (2006) Modeling of elasto-plastic material behavior and ductile micropore damage of metallic materials at large deformations. PhD thesis, Bochum, Germany. Download at http://www-brs.ub.rub.de/netahtml/HSS/Diss/KintzelOlafE/

  28. Gologanu M, Leblond J-B, Devaux J (1993) Approximate models for ductile metals containing nonspherical voids: case of axisymmetric prolate ellipsoidal cavities. J Mech Phys Solids 41:1723–1754

    Article  Google Scholar 

  29. Gologanu M, Leblond J-B, Devaux J (1994) Approximate models for ductile metals containing nonspherical voids: case of axisymmetric oblate ellipsoidal cavities. J Eng Mater Trans ASME 116:290–297

    Article  Google Scholar 

  30. Ponte Castañeda P, Zaidman M (1994) Constitutive models for porous materials with evolving microstructure. J Mech Phys Solids 42:1459–1497

    Article  MathSciNet  Google Scholar 

  31. Gologanu M, Leblond J-B, Perrin G, Devaux J (1995) Recent extensions of Gurson’s model for porous ductile metals. In: Suquet P (ed) Continuum micromechanics. Springer, Heidelberg, pp 61–130

    Google Scholar 

  32. Pardoen T, Hutchinson JW (2000) An extended model for void growth and coalescence. J Mech Phys Solids 48:2467–2512

    Article  Google Scholar 

  33. Søvik OP, Thaulow C (1997) Growth of spheroidal voids in elastic-plastic solids. Fatigue Fract Eng Mater Struct 20:1731–1744

    Article  Google Scholar 

  34. Leblond J-B, Perrin G, Suquet P (1994) Exact results and approximate models for porous viscoplastic solids. Int J Plast 10:213–235

    Article  Google Scholar 

  35. Garajeu M, Suquet P (1997) Effective properties of porous ideally plastic or viscoplastic materials containing rigid particles. J Mech Phys Solids 45:873–902

    Article  MathSciNet  Google Scholar 

  36. Monchiet V, Charkaluk E, Kondo D (2007) An improvement of Gurson-type models of porous materials by using Eshelby-like trial velocity fields. CR Mécanique 335:32–41

    Article  Google Scholar 

  37. Monchiet V, Charkaluk E, Kondo D (2011) A micromechanics-based modification of the Gurson criterion by using Eshelby-like velocity fields. Eur J Mech A Solid 30:940–949

    Article  Google Scholar 

  38. Ponte-Castañeda P (1991) The effective mechanical properties of nonlinear isotropic composites. J Mech Phys Solids 39:45–71

    Article  MathSciNet  MATH  Google Scholar 

  39. Leblond J-B, Morin L, Cazacu O (2014) An improved description of spherical void growth in plastic porous materials with finite porosities. Procedia Mater Sci 3:1232–1237

    Article  MATH  Google Scholar 

  40. Madou K, Leblond J-B (2012) A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids—I, Limit-analysis of some representative cell. J Mech Phys Solids 60:1020–1036

    Article  MathSciNet  Google Scholar 

  41. Leblond J-B, Gologanu M (2008) External estimate of the yield surface of an arbitrary ellipsoid containing a confocal void. CR Mécanique 336:813–819

    Article  Google Scholar 

  42. Madou K, Leblond J-B (2012) A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids—II, Determination of yield criterion parameters. J Mech Phys Solids 60:1037–1058

    Article  MathSciNet  Google Scholar 

  43. Madou K, Leblond J-B (2013) Numerical studies of porous ductile materials containing arbitrary ellipsoidal voids—I, Yield surfaces of representative cells. Eur J Mech A Solid 42:480–489

    Article  Google Scholar 

  44. Madou K, Leblond J-B, Morin L (2013) Numerical studies of porous ductile materials containing arbitrary ellipsoidal voids—II, Evolution of the length and orientation of the void axes. Eur J Mech A Solid 42:490–507

    Article  MATH  Google Scholar 

  45. Pastor F, Kondo D (2013) Assessment of hollow spheroid models for ductile failure prediction by limit analysis and conic programming. Eur J Mech A Solid 38:100–114

    Article  MathSciNet  Google Scholar 

  46. Trillat M, Pastor J (2005) Limit analysis and Gurson’s model. Eur J Mech A Solid 24:800–819

    Article  Google Scholar 

  47. Thoré P, Pastor F, Pastor J (2011) Hollow sphere models, conic programming and third stress invariant. Eur J Mech A Solid 30:63–71

    Article  MATH  Google Scholar 

  48. Gologanu M (1997) Etude quelques problèmes de rupture ductile des métaux. Thèse de doctorat, Université Paris-6

    Google Scholar 

  49. Stewart JB, Cazacu O (2011) Analytical yield criterion for an anisotropic material containing spherical voids and exhibiting tension–compression asymmetry. Int J Solids Struct 48:357–373

    Article  Google Scholar 

  50. Cazacu O, Revil-Baudard B (2015) New three-dimensional plastic potentials for porous solids with a von Mises matrix. CR Mécanique 343:77–94

    Article  Google Scholar 

  51. Benallal A, Desmorat R, Fournage M (2014) An assessment of the role of the third stress invariant in the Gurson approach for ductile fracture. Eur J Mech A Solid 47:400–414

    Article  MathSciNet  Google Scholar 

  52. Weng GJ (1984) Some elastic properties of reinforced solids with special reference to isotropic ones containging spherical inclusions. Int J Eng Sci 22:845–856

    Article  Google Scholar 

  53. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21:571–574

    Article  Google Scholar 

  54. Stone, van RH, Cox TB, Low JR Jr, Psioda JA (1985) Microstructural aspects of fracture by dimpled fracture. Int Met Rev 30:157–179

    Article  Google Scholar 

  55. Tanaka K, Mori T, Nakamura T (1970) Cavity formation at the interface of a spherical inclusion in a plastically deformed matrix. Philos Mag 21:267–279

    Article  Google Scholar 

  56. Gurland J (1972) Observations on the fracture of cementite particles in a spheroidized 1.05 % C steel deformed at room temperature. Acta Metall 20:735–741

    Article  Google Scholar 

  57. Cox TB, Low JR Jr (1974) An investigation of the plastic fracture of AISI 4340 and 18 Nickel-200 grade maraging steels. Metall Trans 5:1457–1470

    Article  Google Scholar 

  58. McMahon CJ Jr, Cohen M (1965) Initiation of cleavage in polycrystalline iron. Acta Metall 13:591–604

    Article  Google Scholar 

  59. Argon AS, Im J (1975) Separation of second phase particles in spheroidized 1045 steel, Cu-0.6Pct Cr alloy, and maraging steel in plastic straining. Metall Trans A 6:839–851

    Article  Google Scholar 

  60. Goods SH, Brown LM (1979) The nucleation of cavities by plastic deformation. Acta Metall 27:1–15

    Article  Google Scholar 

  61. Maire E, Buffiere JY, Salvo L, Blandin JJ, Ludwig W, Letang JM (2001) On the application of X-ray tomography in the field of materials science. Adv Eng Mater 3:539–546

    Article  Google Scholar 

  62. Chen ZT, Worswick MJ, Cinotti N, Pilkey AK, Lloyd DJ (2003) A linked FEM-damage percolation model of aluminum alloy sheet forming. Int J Plast 19:2099–2120

    Article  Google Scholar 

  63. Gurson AL (1975) Plastic flow and fracture behaviour of ductile materials incorporating void nucleation, growth, and interaction. PhD thesis, Brown University, Providence, RI

    Google Scholar 

  64. Rosenfield AR, Hahn GT (1966) Numerical descriptions of the ambient low-temperature and high-strain rate flow and fracture behavior of plain carbon steel. ASM Trans 59:962–980

    Google Scholar 

  65. Hancock JW, Mackenzie AC (1976) On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. J Mech Phys Solids 24:147–169

    Article  Google Scholar 

  66. Budiansky B, Hutchinson JW, Slutsky S (1982) Void growth and collapse in viscous solids. In: Mechanics of solids—The Rodney Hill 60th anniversary volume. Pergamon Press, Oxford, pp. 13–45

    Google Scholar 

  67. Thomason PF (1968) A theory for ductile fracture by internal necking of cavities. J Inst Met 96:360–365

    Google Scholar 

  68. Thomason PF (1981) Ductile fracture and the stability of incompressible plasticity in the presence of microvoids. Acta Metall 29:763–777

    Article  Google Scholar 

  69. Thomason PF (1985) A three-dimensional model for ductile fracture by the growth and coalescence of microvoids. Acta Metall 33:1087–1095

    Article  MATH  Google Scholar 

  70. Thomason PF (1993) Ductile fracture by the growth and coalescence of microvoids of non-uniform size and spacing. Acta Metall Mater 41:2127–2134

    Article  Google Scholar 

  71. Zhang ZL, Niemi E (1995) A new failure criterion for the Gurson-Tvergaard dilational constitutive model. Int J Fract 70:321–334

    Article  Google Scholar 

  72. Benzerga AA, Leblond J-B (2014) Effective yield criterion accounting for microvoid coalescence. J Appl Mech 81:031009

    Article  Google Scholar 

  73. Morin L, Leblond J-B, Benzerga AA (2015) Coalescence of voids by internal necking, Theoretical estimates and numerical results. J Mech Phys Solids 75:140–158

    Article  MathSciNet  Google Scholar 

  74. McVeigh C, Vernerey F, Liu WK, Moran B, Olson G (2007) An interactive micro-void shear localization mechanism in high strength steels. J Mech Phys Solids 55:225–244

    Article  Google Scholar 

  75. Barsoum I, Faleskog J (2007) Rupture in combined tension and shear, Experiments. Int J Solids Struct 44:1768–1786

    Article  Google Scholar 

  76. Nahshon K, Hutchinson J (2008) Modification of the Gurson model for shear failure. Eur J Mech A Solid 27:1–17

    Article  Google Scholar 

  77. Xue L (2008) Constitutive modeling of void shearing effect in ductile fracture of porous materials. Eng Fract Mech 75:3343–3366

    Article  MATH  Google Scholar 

  78. Butcher C, Chen Z, Bardelcik A, Worswick M (2009) Damage-based finite-element modeling of tube hydroforming. Int J Fract 155:55–65

    Article  Google Scholar 

  79. Stoughton TB, Yoon JW (2011) A new approach for failure criterion for sheet metals. Int J Plast 27:440–459

    Article  Google Scholar 

  80. Lecarme L, Tekoglu C, Pardoen T (2011) Void growth and coalescence in ductile solids with stage III and stage IV strain hardening. Int J Plast 27:1203–1223

    Article  Google Scholar 

  81. McClintock FA (1968) A criterion for ductile fracture by the growth of holes. J Appl Mech 35:363–371

    Article  Google Scholar 

  82. Malcher L, Andrade Pires FM, César de Sá JMA (2014) An extended GTN model for ductile fracture under high and low stress triaxiality. Int J Plast 54:193–228

    Article  Google Scholar 

  83. Jones RM (2008) Deformation Theory of Plasticity. Bull Ridge Corporation

    Google Scholar 

  84. Williams ML, Schapery RA (1965) Spherical flaw instability in hydrostatic tension. Int J Fract Mech 1:64–72

    Article  Google Scholar 

  85. Jackiewicz J, Kuna M (2003) Non-local regularization for FE simulation of damage in ductile materials. Comp Mater Sci 28:684–695

    Article  Google Scholar 

  86. Jackiewicz J (2011) Use of a modified Gurson model approach for the simulation of ductile fracture by growth and coalescence of microvoids under low, medium and high stress triaxiality loadings. Eng Fract Mech 78:487–502

    Article  MATH  Google Scholar 

  87. Bernauer G, Brocks W (2002) Micro-mechanical modelling of ductile damage and tearing—results of a European numerical round robin. Fatigue Fract Eng Mater Struct 25:363–384

    Article  MATH  Google Scholar 

  88. Springmann M, Kuna M (2005) Identification of material parameters of the Gurson–Tvergaard–Needleman model by combined experimental and numerical techniques. Comp Mater Sci 32:544–552

    Article  Google Scholar 

  89. Springmann M, Kuna M (2006) Determination of ductile damage parameters by local deformation fields, Measurement and simulation. Arch Appl Mech 75:775–797

    Article  Google Scholar 

  90. Hariharan K, Chakraborti N, Barlat F, Lee M-G (2014) A novel multi-objective genetic algorithms-based calculation of Hill’s coefficients. Metall Mater Trans A 45:2704–2707

    Article  MATH  Google Scholar 

  91. Zhang ZL (1996) A sensitivity analysis of material parameters for the Gurson constitutive model. Fatigue Fract Eng Mater Struct 19:561–570

    Article  Google Scholar 

  92. Kiran R, Khandelwal K (2014) Gurson model parameters for ductile fracture simulation in ASTM A992 steels. Fatigue Fract Eng Mater Struct 37:171–183

    Article  Google Scholar 

  93. Jackiewicz J (2009) Calibration and evaluation of a combined fracture model of microvoid growth that may compete with shear in the polycrystalline microstructure by means of evolutionary algorithms. Comp Mater Sci 45:133–149

    Article  MATH  Google Scholar 

  94. Wen J, Huang Y, Hwang KC, Liu C, Li M (2005) The modified Gurson model accounting for the void size effect. Int J Plast 21:381–395

    Google Scholar 

  95. Monchiet V, Bonnet G (2013) A Gurson-type model accounting for void size effects. Int J Solids Struct 50:320–327

    Google Scholar 

  96. Dormieux L, Kondo D (2010) An extension of Gurson model incorporating interface stresses effects. Int J Eng Sci 48:575–581

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Jackiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Jackiewicz, J. (2016). Recent Trends in the Development of Gurson’s Model. In: Hütter, G., Zybell, L. (eds) Recent Trends in Fracture and Damage Mechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-21467-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21467-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21466-5

  • Online ISBN: 978-3-319-21467-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics