Skip to main content

The Role of Organosulfur Compounds Derived From Allium Vegetables in Cancer Prevention and Therapy

  • Chapter
Critical Dietary Factors in Cancer Chemoprevention

Abstract

Organosulfur compounds (OSCs) are a group of small molecules commonly present in Allium vegetables, such as garlic, onions chives, and shallots that have garnered scientific interest for their noted health benefits. OSCs have been evaluated for their potential to prevent or treat major diseases including cancer. Epidemiological evidence of inverse association between increased intake of Allium vegetables and cancer risk is now substantiated by animal studies wherein true causal relationships between OSCs and cancer prevention have been found. This chapter summarizes the chemistry, metabolism, and bioavailability of commonly studied OSCs and the latest developments regarding their anticarcinogenic effects in cell culture and animal models. Data pertinent to clinical trials assessing safety and anticancer efficacy of OSCs are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-FU:

5-Fluorouracil

AA:

Aristolochic acid

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

B[a]P:

Benzo[a]pyrene

CA:

Cancer

CCl4:

Carbon tetrachloride

COX-2:

Cyclooxygenase 2

CYP 2E1:

Cytochrome P450 isoenzyme 2E1

DADS:

Diallyl disulfide

DAS:

Diallyl sulfide

DATS:

Diallyl trisulfide

DMBA:

7,12-Dimethylbenz[a]anthracene

DMH:

Dimethylhydrazine

DR4 and DR5:

Death receptor

ERK:

Extracellular signal-regulated kinase

GST:

Glutathione-S-transferase

HDACs:

Histone deacetylases

HMG-CoA:

3-Hydroxy-3-methyl-glutaryl-Coenzyme A

HUVEC:

Human umbilical vein endothelial cells

i.p.:

Intraperitoneal

JNK:

c-Jun N-terminal kinases

MNNG:

Methylnitronitrosoguanidine

MMP:

Matrix metalloprotease

NAC:

N-acetyl-l-cysteine

NDEA:

N-nitrosodiethylamine

NDMA:

N-nitrosodimethylamine

NDN:

N-diethylnitrosamine

NMBA:

N-nitrosomethylbenzylamine

NF-κB:

Nuclear factor-κB

NKK:

(methylnitrosamino)1-(3-pyridyl)-1-butanone

NMU:

N-methylnitrosourea

OSCs:

Organosulfur compounds

PAH:

Polycyclic aromatic hydrocarbon

PBS:

Phosphate-buffered saline

PCNA:

Proliferating cell nuclear antigen

PFE:

Pomegranate fruit extract

PK:

Pharmacokinetic

ppm:

Parts per million

PSA:

Prostate-specific antigen

pSTAT3:

Phosphorylated signal transducer and activator of transcription 3

q3d:

Every 3 days

q4d:

Every 4 days

qod:

Every other day

qd:

Every day

ROS:

Reactive Oxygen Species

s.c.:

Subcutaneous

SAC:

S-allylcysteine

SAMC:

S-allylmercaptocysteine

S-NaCl:

Saturated sodium chloride

TPA:

12-O-tetradecanoylphorbol 13-acetate

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

TRAMP:

Transgenic adenoma of a mouse prostate

VC:

Vinyl carbamate

XIAP:

X-linked inhibitor of apoptosis protein

Z-ajoene:

Z isomer of ajoene

References

  • Agarwal KC (1996) Therapeutic actions of garlic constituents. Med Res Rev 16(1):111–124

    Article  CAS  Google Scholar 

  • Amagase H, Petesch BL, Matsuura H et al (2001) Intake of garlic and its bioactive components. J Nutr 131(3s):955S–962S

    CAS  Google Scholar 

  • Antony ML, Singh SV (2011) Molecular mechanisms and targets of cancer chemoprevention by garlic-derived bioactive compound diallyl trisulfide. Indian J Exp Biol 49(11):805–816

    CAS  Google Scholar 

  • Antosiewicz J, Herman-Antosiewicz A, Marynowski SW, Singh SV (2006) c-Jun NH(2)-terminal kinase signaling axis regulates diallyl trisulfide-induced generation of reactive oxygen species and cell cycle arrest in human prostate cancer cells. Cancer Res 66(10):5379–86

    Article  CAS  Google Scholar 

  • Aquilano K, Vigilanza P, Filomeni G et al (2010) Tau dephosphorylation and microfilaments disruption are upstream events of the anti-proliferative effects of DADS in SH-SY5Y cells. J Cell Mol Med 14(3):564–577

    CAS  Google Scholar 

  • Bauer D, Mazzio E, Soliman KF et al (2014) Diallyl disulfide inhibits TNFalpha-induced CCL2 release by MDA-MB-231 cells. Anticancer Res 34(6):2763–2770

    CAS  Google Scholar 

  • Benavides GA, Squadrito GL, Mills RW et al (2007) Hydrogen sulfide mediates the vasoactivity of garlic. Proc Natl Acad Sci U S A 104(46):17977–17982

    Article  CAS  Google Scholar 

  • Bianchini F, Vainio H (2001) Allium vegetables and organosulfur compounds: do they help prevent cancer? Environ Health Perspect 109(9):893–902

    Article  CAS  Google Scholar 

  • Block E (1992) The organosulfur chemistry of the Genus Allium-Implications for the organochemistry of sulfur. Angew Chemie 31(9):1135–1178

    Article  Google Scholar 

  • Block E, Ahmad S, Jain MK et al (1984) The chemistry of alkyl thiosulfate esters. 8. (E, Z)-Ajoene: a potent antithrombotic agent from garlic. J Am Chem Soc 106(26):8295–8296

    Article  CAS  Google Scholar 

  • Brady JF, Ishizaki H, Fukuto JM et al (1991) Inhibition of cytochrome P-450 2E1 by diallyl sulfide and its metabolites. Chem Res Toxicol 4(6):642–647

    Article  CAS  Google Scholar 

  • Chandra-Kuntal K, Singh SV (2010) Diallyl trisulfide inhibits activation of signal transducer and activator of transcription 3 in prostate cancer cells in culture and in vivo. Cancer Prev Res (Phila) 3(11):1473–1483

    Article  CAS  Google Scholar 

  • Chittezhath M, Kuttan G (2006) Radioprotective activity of naturally occurring organosulfur compounds. Tumori 92(2):163–169

    CAS  Google Scholar 

  • Choi YH, Park HS (2012) Apoptosis induction of U937 human leukemia cells by diallyl trisulfide induces through generation of reactive oxygen species. J Biomed Sci 19:50

    Article  CAS  Google Scholar 

  • Chu Q, Lee DT, Tsao SW et al (2006) S-allylcysteine, a water-soluble garlic derivative, suppresses the growth of a human androgen-independent prostate cancer xenograft, CWR22R, under in vivo conditions. BJU Int 99(4):925–932

    Article  CAS  Google Scholar 

  • Cohen LA, Zhao Z, Pittman B et al (1999) S-allylcysteine, a garlic constituent, fails to inhibit N-methylnitrosourea-induced rat mammary tumorigenesis. Nutr Cancer 35(1):58–63

    Article  CAS  Google Scholar 

  • Dasgupta P, Bandyopadhyay SS (2013) Role of di-allyl disulfide, a garlic component in NF-kappaB mediated transient G2-M phase arrest and apoptosis in human leukemic cell-lines. Nutr Cancer 65(4):611–622

    Article  CAS  Google Scholar 

  • Dirsch VM, Gerbes AL, Vollmar AM (1998) Ajoene, a compound of garlic, induces apoptosis in human promyeloleukemic cells, accompanied by generation of reactive oxygen species and activation of nuclear factor kappaB. Mol Pharmacol 53(3):402–407

    CAS  Google Scholar 

  • Druesne N, Pagniez A, Mayeur C et al (2004) Diallyl disulfide (DADS) increases histone acetylation and p21(waf1/cip1) expression in human colon tumor cell lines. Carcinogenesis 25(7):1227–1236

    Article  CAS  Google Scholar 

  • Druesne-Pecollo N, Latino-Martel P (2011) Modulation of histone acetylation by garlic sulfur compounds. Anticancer Agents Med Chem 11(3):254–259

    Article  CAS  Google Scholar 

  • Dwivedi C, Rohlfs S, Jarvis D et al (1992) Chemoprevention of chemically induced skin tumor development by diallyl sulfide and diallyl disulfide. Pharm Res 9(12):1668–1670

    Article  CAS  Google Scholar 

  • Ebrahimi M, Mohammad Hassan Z, Mostafaie A et al (2013) Purified protein fraction of garlic extract modulates cellular immune response against breast transplanted tumors in BALB/c mice model. Cell J 15(1):65–75

    Google Scholar 

  • Filomeni G, Aquilano K, Rotilio G et al (2003) Reactive oxygen species-dependent c-Jun NH2-terminal kinase/c-Jun signaling cascade mediates neuroblastoma cell death induced by diallyl disulfide. Cancer Res 63(18):5940–5949

    CAS  Google Scholar 

  • Galeone C, Pelucchi C, Dal Maso L et al (2008) Allium vegetables intake and endometrial cancer risk. Public Health Nutr 12(9):1576–1579

    Article  Google Scholar 

  • George J, Singh M, Srivastava AK et al (2011) Synergistic growth inhibition of mouse skin tumors by pomegranate fruit extract and diallyl sulfide: evidence for inhibition of activated MAPKs/NF-kappaB and reduced cell proliferation. Food Chem Toxicol 49(7):1511–1520

    Article  CAS  Google Scholar 

  • Hadjiolov D, Fernando RC, Schmeiser HH et al (1993) Effect of diallyl sulfide on aristolochic acid-induced forestomach carcinogenesis in rats. Carcinogenesis 14(3):407–410

    Article  CAS  Google Scholar 

  • Hatono S, Jimenez A, Wargovich MJ (1996) Chemopreventive effect of S-allylcysteine and its relationship to the detoxification enzyme glutathione S-transferase. Carcinogenesis 17(5):1041–1044

    Article  CAS  Google Scholar 

  • Herman-Antosiewicz A, Singh SV (2005) Checkpoint kinase 1 regulates diallyl trisulfide-induced mitotic arrest in human prostate cancer cells. J Biol Chem 280(31):28519–28528

    Article  CAS  Google Scholar 

  • Herman-Antosiewicz A, Powolny AA, Singh SV (2007) Molecular targets of cancer chemoprevention by garlic-derived organosulfides. Acta Pharmacol Sin 28(9):1355–1364

    Article  CAS  Google Scholar 

  • Higdon J (2007) An evidence-based approach to dietary phytochemicals, 1st ed. Thieme Publishers

    Google Scholar 

  • Hong JY, Wang ZY, Smith TJ et al (1992) Inhibitory effects of diallyl sulfide on the metabolism and tumorigenicity of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in A/J mouse lung. Carcinogenesis 13(5):901–904

    Article  CAS  Google Scholar 

  • Hong YS, Ham YA, Choi JH et al (2000) Effects of allyl sulfur compounds and garlic extract on the expression of Bcl-2, Bax, and p53 in non-small cell lung cancer cell lines. Exp Mol Med 32:127–134

    Article  CAS  Google Scholar 

  • Hosono T, Fukao T, Ogihara J et al (2005) Diallyl trisulfide suppresses the proliferation and induces apoptosis of human colon cancer cells through oxidative modification of beta-tubulin. J Biol Chem 280(50):41487–41493

    Article  CAS  Google Scholar 

  • Hui C, Jun W, Ya LN et al (2008) Effect of Allium sativum (garlic) diallyl disulfide (DADS) on human non-small cell lung carcinoma H1299 cells. Trop Biomed 25(1):37–45

    CAS  Google Scholar 

  • Ip C, Lisk DJ, Stoewsand GS (1992) Mammary cancer prevention by regular garlic and selenium-enriched garlic. Nutr Cancer 17(3):279–286

    Article  CAS  Google Scholar 

  • Karmakar S, Banik NL, Patel SJ et al (2007) Garlic compounds induced calpain and intrinsic caspase cascade for apoptosis in human malignant neuroblastoma SH-SY5Y cells. Apoptosis 12(4):671–684

    Article  CAS  Google Scholar 

  • Kim YA, Xiao D, Xiao H et al (2007) Mitochondria-mediated apoptosis by diallyl trisulfide in human prostate cancer cells is associated with generation of reactive oxygen species and regulated by Bax/Bak. Mol Cancer Ther 6(5):1599–1609

    Article  CAS  Google Scholar 

  • Kim SH, Bommareddy A, Singh SV (2011) Garlic constituent diallyl trisulfide suppresses x-linked inhibitor of apoptosis protein in prostate cancer cells in culture and in vivo. Cancer Prev Res (Phila) 4(6):897–906

    Article  CAS  Google Scholar 

  • Kim NH, Lee S, Kang MJ et al (2014) Protective effects of diallyl sulfide against Thioacetamide-induced toxicity: a possible role of cytochrome P450 2E1. Biomol Ther (Seoul) 22(2):149–154

    Article  CAS  Google Scholar 

  • Knowles LM, Milner JA (2000) Diallyl disulfide inhibits p34(cdc2) kinase activity through changes in complex formation and phosphorylation. Carcinogenesis 21(6):1129–1134

    Article  CAS  Google Scholar 

  • Knowles LM, Milner JA (2003) Diallyl disulfide induces ERK phosphorylation and alters gene expression profiles in human colon tumor cells. J Nutr 133(9):2901–2906

    CAS  Google Scholar 

  • Kyo E, Uda N, Suzuki A et al (1998) Immunomodulation and antitumor activities of aged garlic extract. Phytomedicine 5(4):259–267

    Article  CAS  Google Scholar 

  • Lai KC, Hsu SC, Kuo CL et al (2013) Diallyl sulfide, diallyl disulfide, and diallyl trisulfide inhibit migration and invasion in human colon cancer colo 205 cells through the inhibition of matrix metalloproteinase-2, -7, and -9 expressions. Environ Toxicol 28(9):479–488

    Article  CAS  Google Scholar 

  • Lai KC, Hsu SC, Yang JS et al (2015) Diallyl trisulfide inhibits migration, invasion and angiogenesis of human colon cancer HT-29 cells and umbilical vein endothelial cells, and suppresses murine xenograft tumour growth. J Cell Mol Med 19(2):474–484

    Article  CAS  Google Scholar 

  • Lea MA, Randolph VM (2001) Induction of histone acetylation in rat liver and hepatoma by organosulfur compounds including diallyl disulfide. Anticancer Res 21(4A):2841–2845

    CAS  Google Scholar 

  • Lea MA, Randolph VM, Patel M (1999) Increased acetylation of histones induced by diallyl disulfide and structurally related molecules. Int J Oncol 15(2):347–352

    CAS  Google Scholar 

  • Lea MA, Randolph VM, Lee JE et al (2001) Induction of histone acetylation in mouse erythroleukemia cells by some organosulfur compounds including allyl isothiocyanate. Int J Cancer 92(6):784–789

    Article  CAS  Google Scholar 

  • Li M, Ciu JR, Ye Y et al (2002a) Antitumor activity of Z-ajoene, a natural compound purified from garlic: antimitotic and microtubule-interaction properties. Carcinogenesis 23(4):573–579

    Article  CAS  Google Scholar 

  • Li M, Min JM, Cui JR et al (2002b) Z-ajoene induces apoptosis of HL-60 cells: involvement of Bcl-2 cleavage. Nutr Cancer 42(2):241–247

    Article  CAS  Google Scholar 

  • Li W, Tian H, Li L et al (2012) Diallyl trisulfide induces apoptosis and inhibits proliferation of A549 cells in vitro and in vivo. Acta Biochim Biophys Sin (Shanghai) 44(7):577–583

    Article  CAS  Google Scholar 

  • Li Y, Zhang J, Zhang L et al (2013) Diallyl trisulfide inhibits proliferation, invasion and angiogenesis of osteosarcoma cells by switching on suppressor microRNAs and inactivating of Notch-1 signaling. Carcinogenesis 34(7):1601–1610

    Article  CAS  Google Scholar 

  • Liao QJ, Su J, Zhou XT et al (2007) Inhibitory effect of diallyl disulfide on proliferation of human colon cancer cell line SW480 in nude mice. Ai Zheng 26(8):828–832

    CAS  Google Scholar 

  • Liao QJ, Su J, He J et al (2009) Effect of diallyl disulfide on cell cycle arrest of human colon cancer SW480 cells. Ai Zheng 28(2):138–141

    Google Scholar 

  • Ling H, Wen L, Ji XX et al (2010) Growth inhibitory effect and Chk1-dependent signaling involved in G2/M arrest on human gastric cancer cells induced by diallyl disulfide. Braz J Med Biol Res 43(3):271–278

    Article  CAS  Google Scholar 

  • Ma JL, Zhang L, Brown LM et al (2012) Fifteen-year effects of Helicobacter pylori, garlic, and vitamin treatments on gastric cancer incidence and mortality. J Natl Cancer Inst 104(6):488–492

    Article  CAS  Google Scholar 

  • Meyer K, Ueberham E, Gebhardt R (2004) Influence of organosulphur compounds from garlic on the secretion of matrix metalloproteinases and their inhibitor TIMP-1 by cultured HUVEC cells. Cell Biol Toxicol 20(4):253–260

    Article  CAS  Google Scholar 

  • Millen AE, Subar AF, Graubard BI et al (2007) Fruit and vegetable intake and prevalence of colorectal adenoma in a cancer screening trial. Am J Clin Nutr 86(6):1754–1764

    CAS  Google Scholar 

  • Milner JA (2001) Mechanisms by which garlic and allyl sulfur compounds suppress carcinogen bioactivation. Garlic and carcinogenesis. Adv Exp Med Biol 492:69–81

    Article  CAS  Google Scholar 

  • Milner J (2004) Organosulfur-garlic compounds and cancer prevention. In: Bao Y, Fenwick R (eds) Phytochemicals in health and disease. Dekker, New York, pp 163–186

    Chapter  Google Scholar 

  • Mousa AS, Mousa SA (2005) Anti-angiogenesis efficacy of the garlic ingredient alliin and antioxidants: role of nitric oxide and p53. Nutr Cancer 53(1):104–110

    Article  CAS  Google Scholar 

  • Munday R, Munday CM (2001) Relative activities of organosulfur compounds derived from onions and garlic in increasing tissue activities of quinone reductase and glutathione transferase in rat tissues. Nutr Cancer 40(2):205–210

    Article  CAS  Google Scholar 

  • Na HK, Kim EH, Choi MA et al (2012) Diallyl trisulfide induces apoptosis in human breast cancer cells through ROS-mediated activation of JNK and AP-1. Biochem Pharmacol 84(10):1241–1250

    Article  CAS  Google Scholar 

  • Nagae S, Ushijima M, Hatono S et al (1994) Pharmacokinetics of the garlic compound S-allylcysteine. Planta Med 60(3):214–217

    Article  CAS  Google Scholar 

  • Nakagawa H, Tsuta K, Kiuchi K et al (2001) Growth inhibitory effects of diallyl disulfide on human breast cancer cell lines. Carcinogenesis 22(6):891–897

    Article  CAS  Google Scholar 

  • Ng KT, Guo DY, Cheng Q et al (2012) A garlic derivative, S-allylcysteine (SAC), suppresses proliferation and metastasis of hepatocellular carcinoma. PLoS One 7(2), e31655

    Article  CAS  Google Scholar 

  • Nishikawa T, Yamada N, Hattori A et al (2002) Inhibition by ajoene of skin-tumor promotion in mice. Biosci Biotechnol Biochem 66(10):2221–2223

    Article  CAS  Google Scholar 

  • Pai MH, Kuo YH, Chiang EP et al (2012) S-Allylcysteine inhibits tumour progression and the epithelial-mesenchymal transition in a mouse xenograft model of oral cancer. Br J Nutr 108(1):28–38

    Article  CAS  Google Scholar 

  • Park EK, Kwon KB, Park KI et al (2002) Role of Ca(2+) in diallyl disulfide-induced apoptotic cell death of HCT-15 cells. Exp Mol Med 34(3):250–257

    Article  CAS  Google Scholar 

  • Powolny AA, Singh SV, Melov S, Hubbard A, Fisher AL (2011) The garlic constituent diallyl trisulfide increases the lifespan of C. elegans via skn-1 activation. Exp Gerontol 46(6):441–52

    Article  CAS  Google Scholar 

  • Rahman K (2001) Historical perspective on garlic and cardiovascular disease. J Nutr 131(3s):977S–979S

    CAS  Google Scholar 

  • Salem S, Salahi M, Mohseni M et al (2011) Major dietary factors and prostate cancer risk: a prospective multicenter case–control study. Nutr Cancer 63(1):21–27

    Google Scholar 

  • Schafer G, Kaschula CH (2014) The immunomodulation and anti-inflammatory effects of garlic organosulfur compounds in cancer chemoprevention. Anticancer Agents Med Chem 14(2):233–240

    Article  CAS  Google Scholar 

  • Schulz M, Lahmann PH, Boeing H et al (2005) Fruit and vegetable consumption and risk of epithelial ovarian cancer: the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol Biomarkers Prev 14(11 Pt 1):2531–2535

    Article  Google Scholar 

  • Shankar S, Chen Q, Ganapathy S et al (2008) Diallyl trisulfide increases the effectiveness of TRAIL and inhibits prostate cancer growth in an orthotopic model: molecular mechanisms. Mol Cancer Ther 7(8):2328–2338

    Article  CAS  Google Scholar 

  • Shin DY, Kim GY, Kim JI et al (2010) Anti-invasive activity of diallyl disulfide through tightening of tight junctions and inhibition of matrix metalloproteinase activities in LNCaP prostate cancer cells. Toxicol In Vitro 24:1569–1576

    Article  CAS  Google Scholar 

  • Shrotriya S, Kundu JK, Na HK et al (2010) Diallyl trisulfide inhibits phorbol ester-induced tumor promotion, activation of AP-1, and expression of COX-2 in mouse skin by blocking JNK and Akt signaling. Cancer Res 70(5):1932–1940

    Article  CAS  Google Scholar 

  • Shukla Y, Kalra N (2007) Cancer chemoprevention with garlic and its constituents. Cancer Lett 247(2):167–181

    Article  CAS  Google Scholar 

  • Singh A, Shukla Y (1998a) Antitumor activity of diallyl sulfide in two-stage mouse skin model of carcinogenesis. Biomed Environ Sci 11(3):258–263

    CAS  Google Scholar 

  • Singh A, Shukla Y (1998b) Antitumour activity of diallyl sulfide on polycyclic aromatic hydrocarbon-induced mouse skin carcinogenesis. Cancer Lett 131(2):209–214

    Article  CAS  Google Scholar 

  • Singh SV, Mohan RR, Agarwal R et al (1996) Novel anti-carcinogenic activity of an organosulfide from garlic: inhibition of H-RAS oncogene transformed tumor growth in vivo by diallyl disulfide is associated with inhibition of p21H-ras processing. Biochem Biophys Res Commun 225(2):660–665

    Article  CAS  Google Scholar 

  • Singh SV, Pan SS, Srivastava SK et al (1998) Differential induction of NAD(P)H:quinone oxidoreductase by anti-carcinogenic organosulfides from garlic. Biochem Biophys Res Commun 244(3):917–920

    Article  CAS  Google Scholar 

  • Singh SV, Powolny AA, Stan SD et al (2008) Garlic constituent diallyl trisulfide prevents development of poorly differentiated prostate cancer and pulmonary metastasis multiplicity in TRAMP mice. Cancer Res 68(22):9503–9511

    Article  CAS  Google Scholar 

  • Song JD, Lee SK, Kim KM et al (2009) Molecular mechanism of diallyl disulfide in cell cycle arrest and apoptosis in HCT-116 colon cancer cells. J Biochem Mol Toxicol 23(1):71–79

    Article  CAS  Google Scholar 

  • Stan SD, Singh SV (2009) Transcriptional repression and inhibition of nuclear translocation of androgen receptor by diallyl trisulfide in human prostate cancer cells. Clin Cancer Res 15(15):4895–4903

    Article  CAS  Google Scholar 

  • Sundaram SG, Milner JA (1996a) Diallyl disulfide induces apoptosis of human colon tumor cells. Carcinogenesis 17(4):669–673

    Article  CAS  Google Scholar 

  • Sundaram SG, Milner JA (1996b) Diallyl disulfide suppresses the growth of human colon tumor cell xenografts in athymic nude mice. J Nutr 126(5):1355–1361

    CAS  Google Scholar 

  • Sundaresan S, Subramanian P (2003) S-allylcysteine inhibits circulatory lipid peroxidation and promotes antioxidants in N-nitrosodiethylamine-induced carcinogenesis. Pol J Pharmacol 55(1):37–42

    CAS  Google Scholar 

  • Sundaresan S, Subramanian P (2008) Prevention of N-nitrosodiethylamine-induced hepatocarcinogenesis by S-allylcysteine. Mol Cell Biochem 310(1-2):209–214

    Article  CAS  Google Scholar 

  • Surh YJ, Lee RC, Park KK et al (1995) Chemoprotective effects of capsaicin and diallyl sulfide against mutagenesis or tumorigenesis by vinyl carbamate and N-nitrosodimethylamine. Carcinogenesis 16(10):2467–2471

    Article  CAS  Google Scholar 

  • Suzui N, Sugie S, Rahman KM et al (1997) Inhibitory effects of diallyl disulfide or aspirin on 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine-induced mammary carcinogenesis in rats. Jpn J Cancer Res 88(8):705–711

    Article  CAS  Google Scholar 

  • Takahashi S, Hakoi K, Yada H et al (1992) Enhancing effects of diallyl sulfide on hepatocarcinogenesis and inhibitory actions of the related diallyl disulfide on colon and renal carcinogenesis in rats. Carcinogenesis 13(9):1513–1518

    Article  CAS  Google Scholar 

  • Tanaka S, Haruma K, Yoshihara M et al (2006) Aged garlic extract has potential suppressive effect on colorectal adenomas in humans. J Nutr 136(3 Suppl):821S–826S

    CAS  Google Scholar 

  • Tang H, Kong Y, Guo J et al (2013) Diallyl disulfide suppresses proliferation and induces apoptosis in human gastric cancer through Wnt-1 signaling pathway by up-regulation of miR-200b and miR-22. Cancer Lett 340(1):72–81

    Article  CAS  Google Scholar 

  • Taylor P, Noriega R, Farah C et al (2006) Ajoene inhibits both primary tumor growth and metastasis of B16/BL6 melanoma cells in C57BL/6 mice. Cancer Lett 239(2):298–304

    Article  CAS  Google Scholar 

  • Tsai CW, Liu KL, Lin CY et al (2011) Structure and function relationship study of Allium organosulfur compounds on upregulating the pi class of glutathione S-transferase expression. J Agric Food Chem 59(7):3398–3405

    Article  CAS  Google Scholar 

  • Tsubura A, Lai YC, Kuwata M et al (2011) Anticancer effects of garlic and garlic-derived compounds for breast cancer control. Anticancer Agents Med Chem 11(3):249–253

    Article  CAS  Google Scholar 

  • Velmurugan B, Bhuvaneswari V, Nagini S (2003) Effect of S-allylcysteine on oxidant-antioxidant status during N-methyl-N'-nitro-N-nitrosoguanidine and saturated sodium chloride-induced gastric carcinogenesis in Wistar rats. Asia Pac J Clin Nutr 12(4):488–494

    CAS  Google Scholar 

  • Velmurugan B, Mani A, Nagini S (2005) Combination of S-allylcysteine and lycopene induces apoptosis by modulating Bcl-2, Bax, Bim and caspases during experimental gastric carcinogenesis. Eur J Cancer Prev 14(4):387–393

    Article  CAS  Google Scholar 

  • Wallace GC, Haar CP, Vandergrift WA 3rd et al (2013) Multi-targeted DATS prevents tumor progression and promotes apoptosis in ectopic glioblastoma xenografts in SCID mice via HDAC inhibition. J Neurooncol 114(1):43–50

    Article  CAS  Google Scholar 

  • Wang EJ, Li Y, Lin M et al (1996) Protective effects of garlic and related organosulfur compounds on acetaminophen-induced hepatotoxicity in mice. Toxicol Appl Pharmacol 136(1):146–154

    Article  CAS  Google Scholar 

  • Wang HC, Yang JH, Hsieh SC et al (2010) Allyl sulfides inhibit cell growth of skin cancer cells through induction of DNA damage mediated G2/M arrest and apoptosis. J Agric Food Chem 58(11):7096–7103

    Article  CAS  Google Scholar 

  • Wang HC, Hsieh SC, Yang JH et al (2012a) Diallyl trisulfide induces apoptosis of human basal cell carcinoma cells via endoplasmic reticulum stress and the mitochondrial pathway. Nutr Cancer 64(5):770–780

    Article  CAS  Google Scholar 

  • Wang Q, Wang Y, Ji Z et al (2012b) Risk factors for multiple myeloma: a hospital-based case–control study in Northwest China. Cancer Epidemiol 36(5):439–444

    Article  Google Scholar 

  • Wargovich MJ, Woods C, Eng VW et al (1988) Chemoprevention of N-nitrosomethylbenzylamine-induced esophageal cancer in rats by the naturally occurring thioether, diallyl sulfide. Cancer Res 48(23):6872–6875

    CAS  Google Scholar 

  • Wargovich MJ, Imada O, Stephens LC (1992) Initiation and post-initiation chemopreventive effects of diallyl sulfide in esophageal carcinogenesis. Cancer Lett 64(1):39–42

    Article  CAS  Google Scholar 

  • Wu CC, Chung JG, Tsai SJ et al (2004) Differential effects of allyl sulfides from garlic essential oil on cell cycle regulation in human liver tumor cells. Food Chem Toxicol 42:1937–1947

    Article  CAS  Google Scholar 

  • Wu XJ, Hu Y, Lamy E, Mersch-Sundermann V (2009) Apoptosis induction in human lung adenocarcinoma cells by oil-soluble allyl sulfides: triggers, pathways, and modulators. Environ Mol Mutagen 50(3):266–275

    Google Scholar 

  • Wu PP, Liu KC, Huang WW et al (2011) Diallyl trisulfide (DATS) inhibits mouse colon tumor in mouse CT-26 cells allograft model in vivo. Phytomedicine 18(8-9):672–676

    Article  CAS  Google Scholar 

  • Xiang SL, Xiao XL, Ling H et al (2005) Antitumor effect of diallyl disulfide on human gastric cancer MGC803 cells xenograft in nude mice. Ai Zheng 24(8):940–944

    CAS  Google Scholar 

  • Xiao D, Choi S, Johnson DE et al (2004) Diallyl trisulfide-induced apoptosis in human prostate cancer cells involves c-Jun N-terminal kinase and extracellular-signal regulated kinase-mediated phosphorylation of Bcl-2. Oncogene 23(33):5594–5606

    Article  CAS  Google Scholar 

  • Xiao D, Herman-Antosiewicz A, Antosiewicz J et al (2005) Diallyl trisulfide-induced G(2)-M phase cell cycle arrest in human prostate cancer cells is caused by reactive oxygen species-dependent destruction and hyperphosphorylation of Cdc 25 C. Oncogene 24(41):6256–6268

    Article  CAS  Google Scholar 

  • Xiao D, Lew KL, Kim YA et al (2006a) Diallyl trisulfide suppresses growth of PC-3 human prostate cancer xenograft in vivo in association with Bax and Bak induction. Clin Cancer Res 12(22):6836–6843

    Article  CAS  Google Scholar 

  • Xiao D, Li M, Herman-Antosiewicz A et al (2006b) Diallyl trisulfide inhibits angiogenic features of human umbilical vein endothelial cells by causing Akt inactivation and down-regulation of VEGF and VEGF-R2. Nutr Cancer 55(1):94–107

    Article  CAS  Google Scholar 

  • Yang JS, Kok LF, Lin YH et al (2006) Diallyl disulfide inhibits WEHI-3 leukemia cells in vivo. Anticancer Res 26(1A):219–225

    CAS  Google Scholar 

  • Zhang ZM, Yang XY, Deng SH et al (2007) Anti-tumor effects of polybutylcyanoacrylate nanoparticles of diallyl trisulfide on orthotopic transplantation tumor model of hepatocellular carcinoma in BALB/c nude mice. Chin Med J (Engl) 120(15):1336–1342

    CAS  Google Scholar 

  • Zhang W, Xiang YB, Li HL et al (2013) Vegetable-based dietary pattern and liver cancer risk: results from the Shanghai women's and men's health studies. Cancer Sci 104(10):1353–1361

    Article  CAS  Google Scholar 

  • Yi L, Su Q (2013) Molecular mechanisms for the anti-cancer effects of diallyl disulfide. Food Chem Toxicol 57:362–370

    Article  CAS  Google Scholar 

  • Yuan JP, Wang GH, Ling H et al (2004) Diallyl disulfide-induced G2/M arrest of human gastric cancer MGC803 cells involves activation of p38 MAP kinase pathways. World J Gastroenterol 10(18):2731–2734

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Bommareddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bommareddy, A., VanWert, A.L., McCune, D.F., Brozena, S.L., Witczak, Z., Singh, S.V. (2016). The Role of Organosulfur Compounds Derived From Allium Vegetables in Cancer Prevention and Therapy. In: Ullah, M., Ahmad, A. (eds) Critical Dietary Factors in Cancer Chemoprevention. Springer, Cham. https://doi.org/10.1007/978-3-319-21461-0_6

Download citation

Publish with us

Policies and ethics