Skip to main content

Heusler Alloy Films for Spintronic Devices

  • Chapter
  • First Online:
Heusler Alloys

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 222))

Abstract

This chapter reviews the requirements for the Heusler-alloy films to be used in spintronic devices. Four key requirements are identified to be large giant magnetoresistance (GMR), large tunnelling magnetoresistance (TMR), large spin-transfer torque and fast spin resonance. These requirements can be achieved by utilising the fundamental properties of the Heusler alloys, such as atomic substitution, generalised Slater-Pauling behaviour, crystalline ordering, half-metallicity, low damping constant, high Curie temperature, good lattice matching and large activation volume. To date the main obstacles for the Heusler-alloy films to be used in spintronic devices are their (i) high crystallisation temperature, (ii) interfacial atomic disordering and (iii) small activation volume. Here, we have investigated these properties for both epitaxial and polycrystalline films and have found a favourable crystallisation orientation to lower the ordering temperature by inducing a two-dimensional growth. We have demonstrated the effect of interfacial dusting to maintain the crystalline ordering from atomic diffusion by annealing. We have also established that the above requirements can be controlled by the competition between the structural and magnetic volume, the latter of which can be defined as activation volume. In all cases, the polycrystalline films have found to be advantageous over the epitaxial ones due to their strain-free growth with controlled grain size. We anticipate that the optimised polycrystalline films can be used in the next generation hard disk read heads and magnetic random access memory cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Dietl, D.D. Awschalom, M. Kaminska, H. Ohno (eds.), Spintronics (Elsevier, Amsterdam, 2008)

    Google Scholar 

  2. S.M. Thompson, J. Phys. D Appl. Phys. 41, 093001 (2008)

    Article  Google Scholar 

  3. S.S.P. Parkin, M. Hayashi, L. Thomas, Science 320, 190 (2008)

    Article  Google Scholar 

  4. R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, Phys. Rev. Lett. 50, 2024 (1983)

    Article  Google Scholar 

  5. R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, L.W. Molenkamp, Nature 402, 787 (1999); Y. Ohno et al. ibid. 402, 790 (1999)

    Google Scholar 

  6. G. Schmidt, D. Ferrand, L.W. MolenKamp, A.T. Filip, B.J. van Wees, Phys. Rev. B 62, R4790 (2000)

    Article  Google Scholar 

  7. E.I. Rashba, Phys. Rev. B 62, 16267 (2000)

    Article  Google Scholar 

  8. S.A. Crooker, M. Furis, X. Lou, C. Adelmann, D.L. Smith, C.J. Palmstrøm, P.A. Crowell, Science 309, 2191 (2005)

    Article  Google Scholar 

  9. M. Johnson, Science 260, 324 (1993)

    Article  Google Scholar 

  10. H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Deitl, Y. Ohno, K. Ohtani, Nature 408, 944 (2000)

    Article  Google Scholar 

  11. D. Chiba, S. Fukami, K. Shimamura, N. Ishiwata, K. Kobayashi, T. Ono, Nat. Mater. 10, 853 (2011)

    Article  Google Scholar 

  12. A. Hirohata, Y.B. Xu, C.M. Guertler, J.A.C. Bland, S.N. Holmes, Phys. Rev. B 63, 104425 (2001); ibid. 66, 035330 (2002)

    Google Scholar 

  13. K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, E. Saitoh, Nature 455, 778 (2008)

    Article  Google Scholar 

  14. http://www.toshiba.co.jp

  15. A. Moser, K. Takano, D.T. Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, S. Sun, E.E. Fullerton, J. Phys. D Appl. Phys. 35, R157 (2002)

    Article  Google Scholar 

  16. H. Katayama, S. Sawamura, Y. Ogimoto, J. Nakajima, K. Kojima, K. Ohta, J. Magn. Soc. Jpn. 23(S1), 233 (1999)

    Google Scholar 

  17. M. Takagishi, K. Yamada, H. Iwasaki, H.N. Fuke, S. Hashimoto, IEEE Trans. Magn. 46, 2086 (2010)

    Article  Google Scholar 

  18. M. Oogane, T. Miyazaki, Magnetic random access memory. in Epitaxial Ferromagnetic Films and Spintronic Applications, ed. by A. Hirohata, Y. Otani (Research Signpost, Trivandrum, 2009), pp. 335–361

    Google Scholar 

  19. J. de Boeck, G. Borghs, Phys. World 12(4), 27 (1999)

    Article  Google Scholar 

  20. H. Tanizaki, T. Tsuji, J. Otani, Y. Yamaguchi, Y. Murai, H. Furuta, S. Ueno, T. Oishi, M. Hayashikoshi, H. Hidaka, Asian Solid-State Circuits Conf. Dig. Tech. Pap. 303 (2006)

    Google Scholar 

  21. I. Galanakis, P.H. Dederichs (eds.), Half-Metallic Alloys (Springer, Berlin, 2005)

    Google Scholar 

  22. A. Hirohata, M. Kikuchi, N. Tezuka, K. Inomata, J.S. Claydon, Y.B. Xu, G. van der Laan, Curr. Opin. Solid State Mater. Sci. 10, 93–107 (2006)

    Article  Google Scholar 

  23. T. Block, C. Felser, G. Jakob, J. Ensling, B. Mühling, P. Gütlich, R.J. Cava, J. Solid State Chem. 176, 646 (2003)

    Article  Google Scholar 

  24. K. Inomata, S. Okamura, R. Goto, N. Tezuka, Jpn. J. Appl. Phys. 42, L419 (2003)

    Article  Google Scholar 

  25. A. Hirohata, H. Kurebayashi, S. Okamura, M. Kikuchi, T. Masaki, T. Nozaki, N. Tezuka, K. Inomata, J. Appl. Phys. 97, 103714 (2005)

    Google Scholar 

  26. A. Hirohata, H. Kurebayashi, S. Okamura, T. Masaki, T. Nozaki, M. Kikuchi, N. Tezuka, K. Inomata, J.S. Claydon, Y.B. Xu, J. Appl. Phys. 97, 10C308 (2005)

    Google Scholar 

  27. I. Galanakis, P.H. Dederichs, N. Papanikolaou, Phys. Rev. B 66, 174429 (2002)

    Article  Google Scholar 

  28. Y. Miura, K. Nagao, M. Shirai, Phys. Rev. B 69, 144413 (2004)

    Article  Google Scholar 

  29. Y. Sakuraba, J. Nakata, M. Oogane, H. Kubota, Y. Ando, A. Sakuma, T. Miyazaki, Jpn. J. Appl. Phys. 44, L1100 (2005)

    Article  Google Scholar 

  30. N. Tezuka, N. Ikeda, F. Mitsuhashi, S. Sugimoto, Appl. Phys. Lett. 94, 162504 (2009)

    Article  Google Scholar 

  31. Y.K. Takahashi, A. Srinivasan, B. Varaprasad, A. Rajanikanth, N. Hase, T.M. Nakatani, S. Kasai, T. Furubayashi, K. Hono, Appl. Phys. Lett 98, 152501 (2011)

    Google Scholar 

  32. K. Suzuki, S. Matsui, Y. Ochiai, Sub-Half-Micron Lithography for ULSIs (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  33. J. Sagar, H. Sukegawa, L. Lari, V.K. Lazarov, S. Mitani, K. O’Grady, A. Hirohata, Appl. Phys. Lett. 101, 102410 (2012)

    Article  Google Scholar 

  34. A. Hirohata, S. Ladak, N.P. Aley, G.B. Hix, Appl. Phys. Lett. 95, 252506 (2009)

    Article  Google Scholar 

  35. M. Vopsaroiu, M.J. Thwaites, S. Rand, P.J. Grundy, K. O’Grady, IEEE Trans. Magn. 40, 2443 (2004)

    Article  Google Scholar 

  36. Y. Sakuraba, M. Ueda, Y. Miura, K. Sato, S. Bosu, K. Saito, M. Shirai, T.J. Konno, K. Takanashi, Appl. Phys. Lett. 101, 252408 (2012)

    Article  Google Scholar 

  37. J. Sato, M. Oogane, H. Naganuma, Y. Ando, Appl. Phys. Express 4, 113005 (2011)

    Article  Google Scholar 

  38. H. Sukegawa, Z. Wen, K. Kondou, S. Kasai, S. Mitani, K. Inomata, Appl. Phys. Lett. 100, 182403 (2012)

    Article  Google Scholar 

  39. H.-X. Liu, Y. Honda, T. Taira, K.-I. Matsuda, M. Arita, T. Uemura, M. Yamamoto, Appl. Phys. Lett. 101, 132418 (2012)

    Article  Google Scholar 

  40. P. Klaer, M. Kallmayer, H.-J. Elmers, L. Basit, J. Thöne, S. Chadov, C. Felser, J. Phys. D Appl. Phys. 42, 084001 (2009)

    Article  Google Scholar 

  41. R. Y. Umetsu, A. Okubo, M. Nagasako, M. Ohtsuka, R. Kainuma, K. Ishida, in Spin 4, 1440018 (2014)

    Google Scholar 

  42. I.V. Markov, Crystal Growth for Beginners, 2nd edn. (World Scientific, Singapore, 2002)

    Google Scholar 

  43. P.L. Gai, E.D. Boyes, Microsc. Res. Tech. 72, 153–164 (2009)

    Article  Google Scholar 

  44. P.L. Gai, E.D. Boyes, Handbook on Nanoscopy, ed. by G. van Tendeloo, D. van Dyke, S. Pennycook (Wiley, New York, 2012), pp. 375-404

    Google Scholar 

  45. J. Sagar, L.R. Fleet, M.Walsh, L. Lari, E.D. Boyes, O. Whear, T. Huminiuc, A. Vick, A. Hirohata, Appl. Phys. Lett. 105, 032401 (2014)

    Google Scholar 

  46. L.R. Fleet, G. Cheglakov, K. Yoshida, V.K. Lazarov, T. Nakayama, A. Hirohata, J. Phys. D. Appl. Phys. 45, 032001(FTC) (2012)

    Google Scholar 

  47. P.J. Webster, K.R.A. Ziebeck, J. Phys. Chem. Solids 34, 1647 (1973)

    Article  Google Scholar 

  48. P. Bruski, S.C. Erwin, M. Ramsteiner, O. Brandt, K.-J. Friedland, R. Farshchi, J. Herfort, H. Riechert, Phys. Rev. B 83, 140409(R) (2011)

    Google Scholar 

  49. I. V. Markov, Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy, 2nd edn. (World Scientific, Singapore, 2003)

    Google Scholar 

  50. H. Endo, A. Hirohata, T. Nakayama, K. O’Grady, J. Phys. D. Appl. Phys. 44, 145003 (2011)

    Article  Google Scholar 

  51. N.P. Aley, R. Kroeger, B. Lafferty, J. Agnew, Y. Lu, K. O’Grady, IEEE Trans. Magn. 45, 3869 (2009)

    Article  Google Scholar 

  52. M. El-Hilo, K. O’Grady, R.W. Chantrell, J. Magn. Magn. Mater. 120, 244 (1993)

    Article  Google Scholar 

  53. J. Sagar, L.R. Fleet, A. Hirohata, K. O’Grady, IEEE Trans. Magn. 47, 2440 (2011)

    Article  Google Scholar 

  54. E.P. Wohlfarth, J. Phys. F Met. Phys. 14, 155 (1984)

    Article  Google Scholar 

  55. P. Gaunt, J. Appl. Phys. 59, 4129 (1986)

    Article  Google Scholar 

  56. L. Lari, S. Lea, C. Feeser, B.W. Wessels, V.K. Lazarov, J. Appl. Phys. 111, 07C311 (2012)

    Article  Google Scholar 

  57. M. Hytch, F. Snoeck, R. Kilaas, Ultramicroscopy 74, 131 (1998)

    Article  Google Scholar 

  58. http://elim.physik.uni-ulm.de/?page_id=564

  59. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Prentice Hall, Upper Saddle River, 2001)

    Google Scholar 

  60. K. O’Grady, L. Fernandex-Outon, G. Vallejo-Fernandez, J. Magn. Magn. Mater. 322, 883 (2010)

    Article  Google Scholar 

  61. R.L. Stamps, A. Stollo, M. Madami, S. Tacchi, C. Carlotti, G. Gubbiotti, M. Fabrizioli, J. Fujii, Phys. Rev. B 74, 134401 (2006)

    Article  Google Scholar 

  62. T. Kubota, S. Tsunegi, M. Oogane, S. Mizukami, T. Miyazaki, H. Naganuma, Y. Ando, Appl. Phys. Lett. 94, 122504 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Kevin O’Grady for his support on the magnetic measurements and for fruitful discussion. We are also grateful for Professors Hiraku Endo and Tadachika Nakayama for their support on the film growth. This work was partially supported by EPSRC (EP/H026126/1 and EP/K03278X/1), Royal Society Research Grant and European Commission (NMP3-SL-2013-604398).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsufumi Hirohata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hirohata, A., Sagar, J., Fleet, L.R., Parkin, S.S.P. (2016). Heusler Alloy Films for Spintronic Devices. In: Felser, C., Hirohata, A. (eds) Heusler Alloys. Springer Series in Materials Science, vol 222. Springer, Cham. https://doi.org/10.1007/978-3-319-21449-8_9

Download citation

Publish with us

Policies and ethics