Skip to main content

Solving Constrained Multilocal Optimization Problems with Parallel Stretched Simulated Annealing

  • Conference paper
  • First Online:
Computational Science and Its Applications -- ICCSA 2015 (ICCSA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9156))

Included in the following conference series:

Abstract

Constrained multilocal programming optimization problems may be solved by solving a sequence of unconstrained problems. In turn, those unconstrained problems may be solved using techniques like the Stretched Simulated Annealing (SSA) method. In order to increase the solving performance and make possible the discovery of new optima, parallel approaches to SSA have been devised, like Parallel Stretched Simulated Annealing (PSSA). Recently, Constrained PSSA (coPSSA) was also proposed, coupling the penalty method with PSSA, in order to solve constrained problems. In this work, coPSSA is explored to solve four test problems using the \(l_1\) penalty function. The effect of the variation of the reduction factor parameter of the \(l_1\) penalty function is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chelouah, R., Siarry, P.: A continuous genetic algorithm designed for the global optimization of multimodal functions. Journal of Heuristics 6, 191–213 (2000)

    Article  MATH  Google Scholar 

  2. Eriksson, P., Arora, J.: A comparison of global optimization algorithms applied to a ride comfort optimization problem. Structural and Multidisciplinary Optimization 24, 157–167 (2002)

    Article  Google Scholar 

  3. Floudas, C.: Recent advances in global optimization for process synthesis, design and control: enclosure of all solutions. Computers and Chemical Engineering, 963–973 (1999)

    Google Scholar 

  4. Hedar, A.-R.: Global Optimization Test Problems. http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm

  5. Ingber, L.: Very fast simulated re-annealing. Mathematical and Computer Modelling 12, 967–973 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kiseleva, E., Stepanchuk, T.: On the efficiency of a global non-differentiable optimization algorithm based on the method of optimal set partitioning. Journal of Global Optimization 25, 209–235 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. León, T., Sanmatías, S., Vercher, H.: A multi-local optimization algorithm. Top 6(1), 1–18 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Message Passing Interface Forum. http://www.mpi-forum.org/

  9. Michalewicz, Z.: A survey of constraint handling techniques in evolutionary computation methods. In: Proceedings of the 4th Annual Conference on Evolutionary Programming, pp. 135–155 (1995)

    Google Scholar 

  10. Mongeau, M., Sartenaer, A.: Automatic decrease of the penalty parameter in exact penalty function methods. European Journal of Operational Research 83, 686–699 (1995)

    Article  MATH  Google Scholar 

  11. Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Operations Research. Springer (1999)

    Google Scholar 

  12. Parsopoulos, K., Plagianakos, V., Magoulas, G., Vrahatis, M.: Objective function stretching to alleviate convergence to local minima. Nonlinear Analysis 47, 3419–3424 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Parsopoulos, K., Vrahatis, M.: Recent approaches to global optimization problems through particle swarm optimization. Natural Computing 1, 235–306 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pereira, A.I., Fernandes, E.M.G.P.: Constrained multi-global optimization using a penalty stretched simulated annealing framework. In: AIP Conference Proceedings Numerical Analysis and Applied Mathematics, vol. 1168, pp. 1354–1357 (2009)

    Google Scholar 

  15. Pereira, A.I., Ferreira, O., Pinho, S.P., Fernandes, E.M.G.P.: Multilocal programming and applications. In: Zelinka, I., Snasel, V., Abraham, A. (eds.) Handbook of Optimization. ISRL, vol. 38, pp. 157–186. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Pereira, A.I., Rufino, J.: Solving multilocal optimization problems with a recursive parallel search of the feasible region. In: Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Rocha, J.G., Falcão, M.I., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2014, Part II. LNCS, vol. 8580, pp. 154–168. Springer, Heidelberg (2014)

    Google Scholar 

  17. Price, C.J., Coope, I.D.: Numerical experiments in semi-infinite programming. Computational Optimization and Applications 6, 169–189 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ribeiro, T., Rufino, J., Pereira, A.I.: PSSA: parallel stretched simulated annealing. In: AIP Conference Proceedings, Numerical Analysis and Applied Mathematics, vol. 1389, pp. 783–786 (2011)

    Google Scholar 

  19. Rufino, J., Pereira, A.I., Pidanic, J.: coPSSA - Constrained parallel stretched simulated annealing. In: Proceedings of the 25th Int. Conference Radioelektronika 2015, pp. 435–439 (2015)

    Google Scholar 

  20. Salhi, S., Queen, N.: A Hybrid Algorithm for Identifying Global and Local Minima When Optimizing Functions with Many Minima. European Journal of Operations Research 155, 51–67 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Shandiz, R.A., Tohidi, E.: Decrease of the Penalty Parameter in Differentiable Penalty Function Methods. Theoretical Economics Letters 1, 8–14 (2011)

    Article  Google Scholar 

  22. Surjanovic, S., Bingham, D.: Virtual Library of Simulation Experiments: Test Functions and Datasets. http://www.sfu.ca/ssurjano

  23. Tsoulos, I., Lagaris, I.: Gradient-controlled, typical-distance clustering for global optimization. http://www.optimization.org (2004)

  24. Tu, W., Mayne, R.: Studies of multi-start clustering for global optimization. International Journal Numerical Methods in Engineering 53, 2239–2252 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wang, Y., Cai, Z., Zhou, Y., Fan, Z.: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique. Structural and Multidisciplinary Optimization 37, 395–413 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana I. Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Pereira, A.I., Rufino, J. (2015). Solving Constrained Multilocal Optimization Problems with Parallel Stretched Simulated Annealing. In: Gervasi, O., et al. Computational Science and Its Applications -- ICCSA 2015. ICCSA 2015. Lecture Notes in Computer Science(), vol 9156. Springer, Cham. https://doi.org/10.1007/978-3-319-21407-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21407-8_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21406-1

  • Online ISBN: 978-3-319-21407-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics