On Computing Order Quantities for Perishable Inventory Control with Non-stationary Demand

  • Alejandro G. Alcoba
  • Eligius M. T. Hendrix
  • Inmaculada García
  • Gloria Ortega
  • Karin G. J. Pauls-Worm
  • Rene Haijema
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9156)

Abstract

The determination of order quantities in an inventory control problem of perishable products with non-stationary demand can be formulated as a Mixed Integer Nonlinear Programming problem (MINLP). One challenge is to deal with the \(\beta \)-service level constraint in terms of the loss function. This paper studies the properties of the optimal solution and derives specific algorithms to determine optimal quantities.

Keywords

Inventory control Perishable products MINLP Loss function Monte Carlo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hedjar, R., Bounkhel, M., Tadj, L.: Predictive control of periodic-review production inventory systems with deteriorating items. TOP 12(1), 193–208 (2004)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Hendrix, E.M.T., Toth, B.G.: Introduction to Nonlinear and Global Optimization. Springer, New York (2010)MATHCrossRefGoogle Scholar
  3. 3.
    Kurawarwala, A.A., Matsuo, H.: Forecasting and inventory management of short life-cycle products. Operations Research 44, 131–150 (1996)MATHCrossRefGoogle Scholar
  4. 4.
    Pauls-Worm, K.G.J., Hendrix, E.M.T., Haijema, R., van der Vorst, J.G.A.J.: An MILP approximation for ordering perishable products with non-stationary demand and service level constraints. International Journal of Production Economics 157, 133–146 (2014)CrossRefGoogle Scholar
  5. 5.
    Rossi, R., Tarim, S.A., Prestwich, S., Hnich, B.: Piecewise linear lower and upper bounds for the standard normal first order loss function. Applied Mathematics and Computation 231, 489–502 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Schrijver, S.K.D., Aghezzaf, E.H., Vanmaele, H.: Double precision rational approximation algorithm for the inverse standard normal first order loss function. Applied Mathematics and Computation 219(3), 1375–1382 (2012)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Silver, E.A., Pyke, D.F., Peterson, R.: Inventory Management and Production Planning and Scheduling. Wiley (1998)Google Scholar
  8. 8.
    Waissi, G.R., Rossin, D.F.: A sigmoid approximation of the standard normal integral. Applied Mathematics and Computation 77(1), 91–95 (1996)MATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alejandro G. Alcoba
    • 1
  • Eligius M. T. Hendrix
    • 1
  • Inmaculada García
    • 1
  • Gloria Ortega
    • 2
  • Karin G. J. Pauls-Worm
    • 3
  • Rene Haijema
    • 3
  1. 1.Computer ArchitectureUniversidad de MálagaMálagaSpain
  2. 2.InformaticsUniversity of Almería, Agrifood Campus of International Excellence, ceiA3AlmeríaSpain
  3. 3.Operations Research and LogisticsWageningen UniversityWageningenThe Netherlands

Personalised recommendations