Advertisement

Assessing Patterns of Urban Transmutation Through 3D Geographical Modelling and Using Historical Micro-Datasets

  • Teresa Santos
  • Antonio Manuel RodriguesEmail author
  • Filipa Ramalhete
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9155)

Abstract

The increasing volume of empty houses in historical cities constitute a challenge in times of economic crisis and acute housing needs. In order build coherent guidelines and implement effective policies, it is necessary to understand long-term patterns in city growth. The present work analyses urban dynamics at the micro level and present clues concerning transmutation in Lisbon, Portugal, using 3D geographical modelling to estimate potential housing supply. The recent availability of detailed demographic historical micro-datasets presents an opportunity to understand long-term trends.

Integrating cartographic and altimetric data, vacant houses of the city are mapped and attributes like area, volume and number of floors are estimated. Then, the potential for social housing is evaluated, based on state owned buildings morphology. Exploratory Spatial Data Analysis (ESDA) help to highlight trends at a finer scale, using advanced geovisualization techniques. The challenge of working with distinct data sources was tackled using Free and Open Source (FOSS) Geographical Database Management Systems (GDBMS) PostgreSQL (and spatial extension PostGIS); this facilitated interoperability between datasets.

Keywords

Urban transmutation Exploratory Spatial Data Analysis (ESDA) Dasymetric mapping 3D data Historical micro-datasets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Regulamento do Regime de Acesso à Habitação Municipal (2009)Google Scholar
  2. 2.
    O Parque Habitacional e a sua Reabilitação: Análise e Evolução 2001–2011 (2013)Google Scholar
  3. 3.
    Anselin, L.: Spatial Econometrics: Methods and Models. Kluwer Academic Publishers (1988)Google Scholar
  4. 4.
    Anselin, L.: Spatial Regression Analysis in R A Workbook (2005)Google Scholar
  5. 5.
    Bivand, R.: Spatial econometrics functions in R: Classes and methods. Journal of Geographical Systems 4(4), 405–421 (2002). http://www.springerlink.com/Index/10.1007/s101090300096 CrossRefGoogle Scholar
  6. 6.
    Fingleton, B.: Spatial Autoregression. Geographical Analysis 41(2009), 385–391 (2009)CrossRefGoogle Scholar
  7. 7.
    Geirinhas, J.A.: Conceitos e Metodologias: BGRI - Base Geográfica de Referenciação de Informação. Revista de Estudos Regionais (2001)Google Scholar
  8. 8.
    Goodchild, M.F.: What Problem? Spatial Autocorrelation and Geographic Information Science. Geographical Analysis 41(4), 411–417 (2009). http://doi.wiley.com/10.1111/j.1538-4632.2009.00769.x CrossRefGoogle Scholar
  9. 9.
    Guerra, I., Pereira, S.M., Fernandes, M., Botelho, P., Marques, P., Mateus, A., Primitivo, S., Caetano, A., Cabral, C., Pereira, M., Portas, N., Marques, T.S., Matos, F., Ferreira, E.: Relatório 1: Diagnóstico de Dinâmicas e Carências Habitacionais. Tech. rep., CET-ISCTE / IRIC / A.Mateus e AssociadosGoogle Scholar
  10. 10.
  11. 11.
    Madeira, C.A.C.L.: A Reabilitação Habitacional em Portugal - Avaliação dos Programas RECRIA, REHABITA, RECRIPH E SOLARH. Master thesis, Universidade Técnica de Lisboa (2009)Google Scholar
  12. 12.
    Neves, B., Rodrigues, A.M., Santos, T., Freire, S.: Unlocking geographical information from academia: an open source WebGIS solution. In: Proceedings of the VI Jornadas de SIG Libre. SIGTE - Servei de Sistemes d’informció Geográfica i Teledetecció, Girona (2012). http://www.fcsh.unl.pt/e-geo/sites/default/files/dl/
  13. 13.
    Rodrigues, A.M., Neves, B., Rebelo, C.: Terra communis (tComm): a free data provider for historical census micro-data. In: Proceedings of the VII Jornadas de SIG Libre. SIGTE - Servei de Sistemes d’informció Geográfica i Teledetecció, Girona (2013). http://www.sigte.udg.edu/jornadassiglibre2013/uploads/articulos_13/a9.pdf
  14. 14.
    Rodrigues, A.M., Santos, T., de Deus, R.F., Pimentel, D.: Land-use dynamics at the micro level: constructing and analyzing historical datasets for the portuguese census tracts. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part II. LNCS, vol. 7334, pp. 565–577. Springer, Heidelberg (2012). http://link.springer.com/chapter/10.1007/978-3-642-31075-1_42 CrossRefGoogle Scholar
  15. 15.
    Rodrigues, A.M., Santos, T., Pimentel, D.: Asymmetrical-mapping based methodology: constructing historical datasets for Portuguese census tracts. In: Gensel, J., Josselin, D., Vandenbroucke, D. (eds.) Proceedings of the AGILE 2012 International Conference on Geographic Information Science, Avignon. Multidisciplinary Research on Geographical Information in Europe and Beyond, pp. 24–27 (2012)Google Scholar
  16. 16.
    Rodrigues, A.M., Santos, T., Pimentel, D.: Socio-economic dynamics within a middle-size municipality: testing the strengths of historical micro-datasets. In: Gestão integrada de territórios intermunicipais: o papel dos Sistemas de Informaçãao Geográfica. 7as Jornadas de Gestão do Território - Livro de resumos, Tomar (2012). http://www.fcsh.unl.pt/e-geo/sites/default/files/dl/
  17. 17.
    Santos, T.: Producing Geographical Information for Land Planning Using VHR Data: Local Scale Applications. LAP LAMBERT Academic Publishing (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Teresa Santos
    • 1
  • Antonio Manuel Rodrigues
    • 1
    Email author
  • Filipa Ramalhete
    • 1
  1. 1.CICS.NOVA Interdisciplinary Centre of Social Sciences, Faculdade de Cincias Sociais e HumanasUniversidade Nova de LisboaLisbonPortugal

Personalised recommendations