Advertisement

The Maximum Similarity Partitioning Problem and its Application in the Transcriptome Reconstruction and Quantification Problem

  • Alex Z. ZaccaronEmail author
  • Said S. Adi
  • Carlos H. A. Higa
  • Eloi Araujo
  • Burton H. Bluhm
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9155)

Abstract

Reconstruct and quantify the RNA molecules in a cell at a given moment is an important problem in molecular biology that allows one to know which genes are being expressed and at which intensity level. Such problem is known as Transcriptome Reconstruction and Quantification Problem (TRQP). Although several approaches were already designed that solve the TRQP, none of them model it as a combinatorial optimization problem. In order to narrow this gap, we present here a new combinatorial optimization problem called Maximum Similarity Partitioning Problem (MSPP) that models the TRQP. In addition, we prove that the MSPP is NP-complete in the strong sense and present a greedy heuristic for it.

Keywords

Partition Similarity Transcriptome Reconstruction and quantification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Li, J.J., Jiang, C.R., Brown, J.B., Huang, H., Bicke, P.J.: Sparse linear modeling of next-generation mRNA sequencing (RNA-Seq) data for isoform discovery and abundance estimation. Proceedings of the National Academy of Sciences 108(50), 19 867–19 872 (2011)CrossRefGoogle Scholar
  2. 2.
    Schulz, M.H., Zerbino, D.R., Vingron, M., Birney, E.: Oases: robust de novo RNA-Seq assembly across the dynamic range of expression levels. Bioinformatics 28(8), 1086–1092 (2012)CrossRefGoogle Scholar
  3. 3.
    Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J., Pachter, L.: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature biotechnology 28(5), 511–515 (2010)CrossRefGoogle Scholar
  4. 4.
    Guttman, M., Garber, M., Levin, J.Z., Donaghey, J., Robinson, J., Adiconis, X., Fan, L., Koziol, M.J., Gnirke, A., Nusbaum, C., et al.: Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nature biotechnology 28(5), 503–510 (2010)CrossRefGoogle Scholar
  5. 5.
    Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., et al.: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature biotechnology 29(7), 644–652 (2011)CrossRefGoogle Scholar
  6. 6.
    Li, W., Feng, J., Jiang, T.: IsoLasso: a LASSO regression approach to RNA-Seq based transcriptome assembly. Journal of Computational Biology 18(11), 1693–1707 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Mezlini, A.M., Smith, E.J., Fiume, M., Buske, O., Savich, G.L., Shah, S., Aparicio, S., Chiang, D.Y., Goldenberg, A., Brudno, M.: iReckon: Simultaneous isoform discovery and abundance estimation from RNA-seq data. Genome research 23(3), 519–529 (2013)CrossRefGoogle Scholar
  8. 8.
    Behr, J., Kahles, A., Zhong, Y., Sreedharan, V.T., Drewe, P., R atsch, G.: MITIE: Simultaneous RNA-Seq-based transcript identification and quantification in multiple samples. Bioinformatics 29(20), 2529–2538 (2013)CrossRefGoogle Scholar
  9. 9.
    Martin, J., Bruno, V.M., Fang, Z., Meng, X., Blow, M., Zhang, T., Sherlock, G., Snyder, M., Wang, Z.: Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads. BMC genomics 11(1), 663 (2010)CrossRefGoogle Scholar
  10. 10.
    de Lima, L. I. S.: O problema do alinhamento de segmentos: Master’s thesis, Universidade Federal de Mato Grosso do Sul, October (2013) (in portuguese)Google Scholar
  11. 11.
    Pevzner, P.: Computational molecular biology: an algorithmic approach. MIT press (2000)Google Scholar
  12. 12.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of books in the mathematical sciences. W.H. Freeman (1979)Google Scholar
  13. 13.
    Wang, Z., Gerstein, M., Snyder, M.: RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics 10(1), 57–63 (2009)CrossRefGoogle Scholar
  14. 14.
    Griebel, T., Zacher, B., Ribeca, P., Raineri, E., Lacroix, V., Guigó, R., Sammeth, M.: Modelling and simulating generic RNA-Seq experiments with the flux simulator. Nucleic acids research 40(20), 10073–10083 (2012)CrossRefGoogle Scholar
  15. 15.
    Lu, B., Zeng, Z., Shi, T.: Comparative study of de novo assembly and genome-guided assembly strategies for transcriptome reconstruction based on RNA-Seq. Science China Life Sciences 56(2), 143–155 (2013)CrossRefGoogle Scholar
  16. 16.
    Martin, J.A., Wang, Z.: Next-generation transcriptome assembly. Nature Reviews Genetics 12(10), 671–682 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alex Z. Zaccaron
    • 1
    Email author
  • Said S. Adi
    • 1
  • Carlos H. A. Higa
    • 1
  • Eloi Araujo
    • 1
  • Burton H. Bluhm
    • 2
  1. 1.Faculdade de ComputaçãoUniversidade Federal de Mato Grosso do SulCampo GrandeBrazil
  2. 2.Plant Pathology DepartmentUniversity of ArkansasFayettevilleUSA

Personalised recommendations