Advanced Induction Variable Elimination for the Matrix Multiplication Task

  • Jerzy RespondekEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9155)


The main objective of this article is to make use of the induction variable elimination in the matrix multiplication task. The main obstacle to this aim is iterating through a matrix column, because it requires jumping over tables. As a solution to this trouble we propose a shifting window in a form of a table of auxiliary double pointers. The ready-to-use C++ source code is presented. Finally, we performed thorough time execution tests of the new C++ matrix multiplication algorithm. Those tests proved the high efficiency of the proposed optimization.


C++ Iterators Linear Algebra Matrix multiplication Pointers Programming languages Smart Pointers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aceto, L.: Some applications of the Pascal matrix to the study of numerical methods for differential equations. Boll. del. Unione Matem. Ital. B 8(3), 639–651 (2005)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Aceto, L., Magherini, C., Weinmuller, E.B.: Matrix methods for radial Schrödinger eigenproblems defined on a semi-infinite domain. Appl. Math. Comp. 255, 179–188 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Augustyn, D.R., Warchal, L.: Cloud service solving N–body problem based on Windows Azure platform. Comm. in Comput. and Inf. Sci. 79, 84–95 (2010)Google Scholar
  4. 4.
    Augustyn, D.R.: Query-condition-aware histograms in selectivity estimation method. Adv. in Intel. and Soft Comput. 103, 437–446 (2011)Google Scholar
  5. 5.
    Bellman, R.: Introduction to Matrix Analysis. Society for Industrial Mathematics, New York (1987)Google Scholar
  6. 6.
    Coppersmith, Winograd S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9, 251–280 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Cormen, T.H., Leiserson, Ch.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd Edn. McGraw–Hill (2001)Google Scholar
  8. 8.
    Kernighan, B.W., Ritchie, D.M.: The C Programming Language. Prentice-Hall, New Jersey (1978)Google Scholar
  9. 9.
    Kincaid, D.R., Cheney, E.W.: Numerical Analysis: Mathematics of Scientific Computing, 3rd edn. Brooks Cole, California (2001)Google Scholar
  10. 10.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C, 2nd edn. Cambridge University Press, Cambridge (1992)zbMATHGoogle Scholar
  11. 11.
    Respondek, J.: On the confluent Vandermonde matrix calculation algorithm. Appl. Math. Lett. 24, 103–106 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Respondek, J.: Numerical recipes for the high efficient inverse of the confluent Vandermonde matrices. Appl. Math. Comp. 218(5), 2044–2054 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Sakthivel, R., Ganesh, R., Anthoni, S.M.: Approximate controllability of fractional nonlinear differential inclusions. Appl. Math. and Comp. 225, 708–717 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13, 354–356 (1969)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Stroustrup, B.: The C++ Programming Language, 3rd edn. AT&T Labs, New Jersey (2000)Google Scholar
  16. 16.
    Stroustrup, B.: The Design and Evolution of C++, 9th edn. Addison-Wesley, Massachusetts (1994)Google Scholar
  17. 17.
    Waite, W.M., Goos, G.: Compiler Construction, Monographs in Computer Science, 2nd edn. Springer Verlag, New York (1983)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of Automatic Control, Electronics and Computer Science, Institute of Computer ScienceSilesian University of TechnologyGliwicePoland

Personalised recommendations