Skip to main content

Comparing Cuckoo Search, Bee Colony, Firefly Optimization, and Electromagnetism-Like Algorithms for Solving the Set Covering Problem

  • Conference paper
  • First Online:
Computational Science and Its Applications -- ICCSA 2015 (ICCSA 2015)

Abstract

The set covering problem is a classical model in the subject of combinatorial optimization for service allocation, that consists in finding a set of solutions for covering a range of needs at the lowest possible cost. In this paper, we report various approximate methods to solve this problem, such as Cuckoo Search, Bee Colony, Firefly Optimization, and Electromagnetism-Like Algorithms. We illustrate experimental results of these metaheuristics for solving a set of 65 non-unicost set covering problems from the Beasley’s OR-Library.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akay, B., Karaboga, D.: Parameter tuning for the artificial bee colony algorithm. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 608–619. Springer, Heidelberg (2009)

    Google Scholar 

  2. Balas, E., Carrera, M.C.: Carnegie-Mellon University. Management Sciences Research Group. A Dynamic Subgradient-based Branch and Bound Procedure for Set Covering. Management sciences research report. Management Sciences Research Group, Graduate School of Industrial Administration, Carnegie Mellon University (1992)

    Google Scholar 

  3. Beasley, J.E.: http://www.brunel.ac.uk/mastjjb/jeb/info.html (last visited on January 30, 2015)

  4. Beasley, J.E., Chu, P.C.: A genetic algorithm for the set covering problem. European Journal of Operational Research 94(2), 392–404 (1996)

    Article  MATH  Google Scholar 

  5. Birbil, S.I., Fang, S.-C.: An electromagnetism-like mechanism for global optimization. Journal of Global Optimization 25(3), 263–282 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brusco, M.J., Jacobs, L.W., Thompson, G.M.: A morphing procedure to supplement a simulated annealing heuristic for cost and coverage correlated setcovering problems. Annals of Operations Research 86, 611–627 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Caprara, A., Fischetti, M., Toth, P.: A heuristic method for the set covering problem. Operations Research 47, 730–743 (1995)

    Article  MathSciNet  Google Scholar 

  8. Caprara, A., Toth, P., Fischetti, M.: Algorithms for the set covering problem. Annals of Operations Research 98(1–4), 353–371 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Caserta, M.: Tabu search-based metaheuristic algorithm for large-scale set covering problems. In: Doerner, K.F., Gendreau, M., Greistorfer, P., Gutjahr, W., Hartl, R.F., Reimann, M. (eds.) Metaheuristics. Operations Research/Computer Science Interfaces Series, vol. 39, pp. 43–63. Springer, US (2007)

    Google Scholar 

  10. Ceria, S., Nobili, P., Sassano, A.: A Lagrangian-based heuristic for large-scale set covering problems. Mathematical Programming 81(2), 215–228 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chandrasekaran, K., Simon, S.P., Padhy, N.P.: Binary real coded firefly algorithm for solving unit commitment problem. Information Sciences 249, 67–84 (2013)

    Google Scholar 

  12. Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233–235 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  13. Crawford, B., Castro, C., Monfroy, E., Soto, R., Palma, W., Paredes, F.: Dynamic selection of enumeration strategies for solving constraint satisfaction problems. Romanian Journal of Information Science and Technology 15(2), 106–128 (2013)

    Google Scholar 

  14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  15. Karaboga, D., Akay, B.: A survey: algorithms simulating bee swarm intelligence. Artificial Intelligence Review 31(1–4), 61–85 (2009)

    Article  Google Scholar 

  16. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. Journal of Global Optimization 39(3), 459–471 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kiran, M.S., Gndz, M.: Xor-based artificial bee colony algorithm for binary optimization. Turkish Journal of Electrical Engineering and Computer Sciences 21(suppl. 2), 2307–2328 (2013); cited By 2

    Google Scholar 

  18. Mirjalili, S., Hashim, S., Taherzadeh, G., Mirjalili, S.Z., Salehi, S.: A study of different transfer functions for binary version of particle swarm optimization. In: GEM 2011. CSREA Press (2011)

    Google Scholar 

  19. Pezzella, F., Faggioli, E.: Solving large set covering problems for crew scheduling. Top 5(1), 41–59 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Vasko, F.J., Wilson, G.R.: Using a facility location algorithm to solve large set covering problems. Operations Research Letters 3(2), 85–90 (1984)

    Article  MATH  Google Scholar 

  21. Vasko, F.J., Wolf, F.E., Stott, K.L.: Optimal selection of ingot sizes via set covering. Oper. Res. 35(3), 346–353 (1987)

    Article  Google Scholar 

  22. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)

    Google Scholar 

  23. Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  24. Yang, X.-S.: Bat algorithm and cuckoo search: a tutorial. In: Yang, X.-S. (ed.) Artificial Intelligence, Evolutionary Computing and Metaheuristics. SCI, vol. 427, pp. 421–434. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  25. Yang, X.S., Deb, S.: Cuckoo Search via Levy Flights. ArXiv e-prints (March 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Galleguillos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Soto, R. et al. (2015). Comparing Cuckoo Search, Bee Colony, Firefly Optimization, and Electromagnetism-Like Algorithms for Solving the Set Covering Problem. In: Gervasi, O., et al. Computational Science and Its Applications -- ICCSA 2015. ICCSA 2015. Lecture Notes in Computer Science(), vol 9155. Springer, Cham. https://doi.org/10.1007/978-3-319-21404-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21404-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21403-0

  • Online ISBN: 978-3-319-21404-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics