Advertisement

Autonomous Tuning for Constraint Programming via Artificial Bee Colony Optimization

  • Ricardo Soto
  • Broderick Crawford
  • Felipe Mella
  • Javier Flores
  • Cristian GalleguillosEmail author
  • Sanjay Misra
  • Franklin Johnson
  • Fernando Paredes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9155)

Abstract

Constraint Programming allows the resolution of complex problems, mainly combinatorial ones. These problems are defined by a set of variables that are subject to a domain of possible values and a set of constraints. The resolution of these problems is carried out by a constraint satisfaction solver which explores a search tree of potential solutions. This exploration is controlled by the enumeration strategy, which is responsible for choosing the order in which variables and values are selected to generate the potential solution. Autonomous Search provides the ability to the solver to self-tune its enumeration strategy in order to select the most appropriate one for each part of the search tree. This self-tuning process is commonly supported by an optimizer which attempts to maximize the quality of the search process, that is, to accelerate the resolution. In this work, we present a new optimizer for self-tuning in constraint programming based on artificial bee colonies. We report encouraging results where our autonomous tuning approach clearly improves the performance of the resolution process.

Keywords

Artificial intelligence Optimization Adaptive systems Metaheuristics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akay, B., Karaboga, D.: A modified artificial bee colony algorithm for real-parameter optimization. Information Sciences 192, 120–142 (2012)CrossRefGoogle Scholar
  2. 2.
    Apt, K.R.: Principles of Constraint Programming. Cambridge University Press (2003)Google Scholar
  3. 3.
    Barták, R., Rudová, H.: Limited assignments: a new cutoff strategy for incomplete depth-first search. In: Proceedings of the 20th ACM Symposium on Applied Computing (SAC), pp. 388–392 (2005)Google Scholar
  4. 4.
    Castro, C., Monfroy, E., Figueroa, C., Meneses, R.: An approach for dynamic split strategies in constraint solving. In: Gelbukh, A., de Albornoz, A., Terashima-Marín, H. (eds.) MICAI 2005. LNCS (LNAI), vol. 3789, pp. 162–174. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  5. 5.
    Chandrasekaran, K., Hemamalini, S., Simon, S.P., Padhy, N.P.: Thermal unit commitment using binary/real coded artificial bee colony algorithm. Electric Power Systems Research 84, 109–119 (2012)Google Scholar
  6. 6.
    Crawford, B., Soto, R., Castro, C., Monfroy, E.: A hyperheuristic approach for dynamic enumeration strategy selection in constraint satisfaction. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2011, Part II. LNCS, vol. 6687, pp. 295–304. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  7. 7.
    Crawford, B., Soto, R., Castro, C., Monfroy, E., Paredes, F.: An Extensible Autonomous Search Framework for Constraint Programming. Int. J. Phys. Sci. 6(14), 3369–3376 (2011)Google Scholar
  8. 8.
    Crawford, B., Soto, R., Monfroy, E., Palma, W., Castro, C., Paredes, F.: Parameter tuning of a choice-function based hyperheuristic using Particle Swarm Optimization. Expert Systems with Applications 40(5), 1690–1695 (2013)CrossRefGoogle Scholar
  9. 9.
    Crawford, B., Soto, R., Monfroy, E., Palma, W., Castro, C., Paredes, F.: Parameter tuning of a choice-function based hyperheuristic using particle swarm optimization. Expert Syst. Appl. 40(5), 1690–1695 (2013)CrossRefGoogle Scholar
  10. 10.
    Crawford, B., Soto, R., Montecinos, M., Castro, C., Monfroy, E.: A framework for autonomous search in the eclipse solver. In: Mehrotra, K.G., Mohan, C.K., Oh, J.C., Varshney, P.K., Ali, M. (eds.) IEA/AIE 2011, Part I. LNCS, vol. 6703, pp. 79–84. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  11. 11.
    Hamadi, Y., Monfroy, E., Saubion, F.: Autonomous Search. Springer (2012)Google Scholar
  12. 12.
    Karaboga, D., Basturk, B.: Artificial bee colony (abc) optimization algorithm for solving constrained optimization problems. In: Proceedings of the 12th International Fuzzy Systems Association World Congress on Foundations of Fuzzy Logic and Soft Computing, pp. 789–798 (2007)Google Scholar
  13. 13.
    Karaboga, D., Basturk, B.: On the performance of artificial bee colony (abc) algorithm. Soft Computing 8, 687–697 (2008)CrossRefGoogle Scholar
  14. 14.
    Karaboga, D., Ozturk, C., Karaboga, N., Gorkemli, B.: Artificial bee colony programming for symbolic regression. Information Sciences 209, 1–15 (2012)CrossRefGoogle Scholar
  15. 15.
    Karaboga, D., Ozturk, C., Karaboga, N., Gorkemli, B.: A comprehensive survey: artificial bee colony (abc) algorithm and applications. Artificial Intelligence Review 42, 21–57 (2014)CrossRefGoogle Scholar
  16. 16.
    Maturana, J., Saubion, F.: A compass to guide genetic algorithms. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 256–265. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  17. 17.
    Monfroy, E., Castro, C., Crawford, B., Soto, R., Paredes, F., Figueroa, C.: A reactive and hybrid constraint solver. Journal of Experimental and Theoretical Artificial Intelligence 25(1), 1–22 (2013)CrossRefGoogle Scholar
  18. 18.
    Crawford, B., Soto, R., Castro, C., Monfroy, E.: A hyperheuristic approach for dynamic enumeration strategy selection in constraint satisfaction. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2011, Part II. LNCS, vol. 6687, pp. 295–304. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  19. 19.
    Soto, R., Crawford, B., Monfroy, E., Bustos, V.: Using autonomous search for generating good enumeration strategy blends in constraint programming. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part III. LNCS, vol. 7335, pp. 607–617. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  20. 20.
    Yan, X., Zhu, Y., Zou, W., Wang, L.: A new approach for data clustering using hybrid artificial bee colony algorithm. Neurocomputing 97, 241–250 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ricardo Soto
    • 1
    • 2
    • 3
  • Broderick Crawford
    • 1
    • 4
    • 5
  • Felipe Mella
    • 1
  • Javier Flores
    • 1
  • Cristian Galleguillos
    • 1
    Email author
  • Sanjay Misra
    • 6
  • Franklin Johnson
    • 7
  • Fernando Paredes
    • 8
  1. 1.Pontificia Universidad Católica de ValparaísoValparaísoChile
  2. 2.Universidad Autónoma de ChileSantiagoChile
  3. 3.Universidad Cientifica del SurLimaPerú
  4. 4.Universidad San SebastiánSantiagoChile
  5. 5.Universidad Central de ChileSantiagoChile
  6. 6.Atilim UniversityAnkaraTurkey
  7. 7.Universidad de Playa AnchaValparaísoChile
  8. 8.Escuela de Ingeniería IndustrialUniversidad Diego PortalesSantiagoChile

Personalised recommendations