Skip to main content

SEPIA: Search for Proofs Using Inferred Automata

  • Conference paper
  • First Online:
Automated Deduction - CADE-25 (CADE 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9195))

Included in the following conference series:

Abstract

This paper describes SEPIA, a tool for automated proof generation in Coq. SEPIA combines model inference with interactive theorem proving. Existing proof corpora are modelled using state-based models inferred from tactic sequences. These can then be traversed automatically to identify proofs. The SEPIA system is described and its performance evaluated on three Coq datasets. Our results show that SEPIA provides a useful complement to existing automated tactics in Coq.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://bitbucket.org/tomgransden/efsminferencetool.

  2. 2.

    http://ssr.msr-inria.inria.fr/doc/ssreflect-1.4/.

  3. 3.

    https://coq.inria.fr/library/.

  4. 4.

    http://compcert.inria.fr/doc/index.html.

References

  1. Alama, J., Kühlwein, D., Urban, J.: Automated and human proofs in general mathematics: an initial comparison. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 37–45. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development - Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2004)

    Book  Google Scholar 

  3. Duncan, H.: The Use of Data Mining for the Automatic Formation of Tactics. Ph.d. thesis, University of Edinburgh (2007)

    Google Scholar 

  4. Gransden, T., Walkinshaw, N., Raman, R.: Mining state-based models from proof corpora. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 282–297. Springer, Heidelberg (2014)

    Google Scholar 

  5. Grov, G., Komendantskata, E., Bundy, A.: A Statistical Relational Learning Challenge Extracting Proof Strategies from Exemplar Proofs. In: ICML-12 Workshop on Statistical Relational Learning (2012)

    Google Scholar 

  6. Jamnik, M., Kerber, M., Pollet, M., Benzmüller, C.: Automatic learning of proof methods in proof planning. Logic J. IGPL 11(6), 647–673 (2003)

    Article  MATH  Google Scholar 

  7. Kohavi, R.: A Study of Cross-validation and Bootstrap for Accuracy Estimation and Model Selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, pp. 1137–1143. Morgan Kaufmann (1995)

    Google Scholar 

  8. Komendantskaya, E., Heras, J., Grov, G.: Machine learning in proof general: interfacing interfaces. In: User Interfaces for Theorem Provers, EPTCS, vol. 118, pp. 15–41 (2013)

    Google Scholar 

  9. Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the abbadingo one DFA learning competition and a new evidence-driven state merging algorithm. In: Honavar, V.G., Slutzki, G. (eds.) ICGI 1998. LNCS (LNAI), vol. 1433, pp. 1–12. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. The Coq Development Team: The Coq Proof Assistant Reference Manual, Version 8.4. LogiCal Project. http://coq.inria.fr/refman

  11. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL – A Proof Assistant for Higher-Order Logic, LNCS, vol. 2283. Springer, Heidelberg (2002)

    Google Scholar 

  12. Walkinshaw, N., Lambeau, B., Damas, C., Bogdanov, K., Dupont, P.: STAMINA: a competition to encourage the development and assessment of software model inference techniques. Empir. Softw. Eng. 18(4), 791–824 (2013)

    Article  Google Scholar 

  13. Walkinshaw, N., Taylor, R., Derrick, J.: Inferring Extended Finite State Machine Models from Software Executions. Empir. Softw. Eng. 1–43 (2015)

    Google Scholar 

  14. Wiedijk, F.: Formal proof - getting started. Not. AMS 55(11), 1408–1414 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Gransden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gransden, T., Walkinshaw, N., Raman, R. (2015). SEPIA: Search for Proofs Using Inferred Automata. In: Felty, A., Middeldorp, A. (eds) Automated Deduction - CADE-25. CADE 2015. Lecture Notes in Computer Science(), vol 9195. Springer, Cham. https://doi.org/10.1007/978-3-319-21401-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21401-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21400-9

  • Online ISBN: 978-3-319-21401-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics