Abstract
Hereditarily finite (HF) set theory provides a standard universe of sets, but with no infinite sets. Its utility is demonstrated through a formalisation of the theory of regular languages and finite automata, including the Myhill-Nerode theorem and Brzozowski’s minimisation algorithm. The states of an automaton are HF sets, possibly constructed by product, sum, powerset and similar operations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
denotes a typed universal set, here the set of all words.
References
Ballarin, C.: Locales: A module system for mathematical theories. J. Autom. Reasoning 52(2), 123–153 (2014)
Braibant, T., Pous, D.: Deciding Kleene algebras in Coq. Log. Methods Comput. Sci. 8(1), 1–42 (2012)
Champarnaud, J., Khorsi, A., ParanthoĂ«n, T.: Split and join for minimizing: Brzozowski’s algorithm. In: BalĂk, M., Simánek, M. (eds.) The Prague Stringology Conference, pp. 96–104. Czech Technical University, Department of Computer Science and Engineering (2002)
Constable, R.L., Jackson, P.B., Naumov, P., Uribe, J.C.: Constructively formalizing automata theory. In: Plotkin, G.D., Stirling, C., Tofte, M. (eds.) Proof, Language, and Interaction, pp. 213–238. MIT Press (2000)
Doczkal, C., Kaiser, J.-O., Smolka, G.: A constructive theory of regular languages in Coq. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 82–97. Springer, Heidelberg (2013)
Hopcroft, J.E., Ullman, J.D.: Formal Languages and Their Relation to Automata. Addison-Wesley, Boston (1969)
Kozen, D.: Automata and computability. Springer, New York (1997)
Krauss, A., Nipkow, T.: Proof pearl: regular expression equivalence and relation algebra. J. Autom. Reasoning 49(1), 95–106 (2012)
Nipkow, T.: Verified lexical analysis. In: Grundy, J., Newey, M. (eds.) TPHOLs 1998. LNCS, vol. 1479, pp. 1–15. Springer, Heidelberg (1998)
Nipkow, T., Traytel, D.: Unified decision procedures for regular expression equivalence. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 450–466. Springer, Heidelberg (2014)
Paulson, L.C.: Defining functions on equivalence classes. ACM Trans. Comput. Logic 7(4), 658–675 (2006)
Paulson, L.C.: Finite automata in hereditarily finite set theory. Archive of Formal Proofs, February 2015. http://afp.sf.net/entries/Finite_Automata_HF.shtml, Formal proof development
Paulson, L.C.: A mechanised proof of Gödel’s incompleteness theorems using Nominal Isabelle. J. Autom. Reasoning 55(1), 1–37 (2015). Available online at http://link.springer.com/article/10.1007%2Fs10817-015-9322-8
Świerczkowski, S.: Finite sets and Gödel’s incompleteness theorems. Dissertationes Mathematicae 422, 1–58 (2003). http://journals.impan.gov.pl/dm/Inf/422-0-1.html
Wu, C., Zhang, X., Urban, C.: A formalisation of the Myhill-Nerode theorem based on regular expressions. J. Autom. Reasoning 52(4), 451–480 (2014)
Acknowledgements
Christian Urban and Tobias Nipkow offered advice, and suggested Brzozowski’s minimisation algorithm as an example. The referees made a variety of useful comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Paulson, L.C. (2015). A Formalisation of Finite Automata Using Hereditarily Finite Sets. In: Felty, A., Middeldorp, A. (eds) Automated Deduction - CADE-25. CADE 2015. Lecture Notes in Computer Science(), vol 9195. Springer, Cham. https://doi.org/10.1007/978-3-319-21401-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-21401-6_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21400-9
Online ISBN: 978-3-319-21401-6
eBook Packages: Computer ScienceComputer Science (R0)