Advertisement

Recent Harmony Search Algorithms for 0–1 Optimization Problems

  • Broderick CrawfordEmail author
  • Ricardo Soto
  • Néstor Guzmán
  • Franklin Johnson
  • Fernando Paredes
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 528)

Abstract

The Set Covering Problem (SCP) has long been concentrating the interest of many researchers in the field of Combinatorial Optimization. SCP is a 0–1 integer programming problem that consists in finding a set of solutions which allow to cover a set of needs at the lowest cost possible. There are many applications of these kind of problems, the main ones are: location of services, files selection in a data bank, simplification of boolean expressions, balancing production lines, among others. Different metaheuristics have been proposed to solve it. Here, we present the possibilities to solve Set Covering Problems with Harmony Search.

Keywords

Set covering problem Metaheuristics Harmony search algorithm 

Notes

Acknowledgments

Broderick Crawford is supported by Grant CONICYT / FONDECYT / REGULAR / 1140897. Ricardo Soto is supported by Grant CONICYT / FONDECYT / INICIACION / 11130459.

References

  1. 1.
    Ali, A.I., Thiagarajan, H.: A network relaxation based enumeration algorithm for set partitioning. Eur. J. Oper. Res. 38(1), 76–85 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Porto, V.W., Waagen, D. (eds.): EP 1998. LNCS, vol. 1447. Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Balinski, M.L., Quandt, R.E.: On an integer program for a delivery problem. Oper. Res. 12(2), 300–304 (1964)CrossRefGoogle Scholar
  4. 4.
    Bellmore, M., Ratliff, H.D.: Optimal defense of multi-commodity networks. Manag. Sci. 18(4–part–i), B174–B185 (1971)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Breuer, M.A.: Simplification of the covering problem with application to boolean expressions. J. ACM 17(1), 166–181 (1970)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Caprara, A., Fischetti, M., Toth, P.: Algorithms for the set covering problem. Ann. Oper. Res. 98, 353–371 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Christofides, N.: Zero-one programming using non-binary tree-search. Comput. J. 14(4), 418–421 (1971)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Crawford, B., Soto, R., Cuesta, R., Paredes, F.: Using the bee colony optimization method to solve the weighted set covering problem. In: Stephanidis, C. (ed.) HCI 2014, Part I. CCIS, vol. 434, pp. 493–497. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  9. 9.
    Crawford, B., Soto, R., Cuesta, R., Paredes, F.: Application of the artificial bee colony algorithm for solving the set covering problem. Sci. World J. 2014(189164), 1–8 (2014)CrossRefGoogle Scholar
  10. 10.
    Crawford, B., Soto, R., Monfroy, E.: Cultural algorithms for the set covering problem. In: Tan, Y., Shi, Y., Mo, H. (eds.) ICSI 2013, Part II. LNCS, vol. 7929, pp. 27–34. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Crawford, B., Soto, R., Monfroy, E., Palma, W., Castro, C., Paredes, F.: Parameter tuning of a choice-a function based hyperheuristic using particle swarm optimization. Expert Syst. Appl. 40, 1690–1695 (2013)CrossRefGoogle Scholar
  12. 12.
    Crawford, B., Soto, R., Palma, W., Johnson, F., Paredes, F., Olguín, E.: A 2-level approach for the set covering problem: parameter tuning of artificial bee colony algorithm by using genetic algorithm. In: Tan, Y., Shi, Y., Coello, C.A.C. (eds.) ICSI 2014, Part I. LNCS, vol. 8794, pp. 189–196. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    Cuesta, R., Crawford, B., Soto, R., Paredes, F.: An artificial bee colony algorithm for the set covering problem. In: Silhavy, R., Senkerik, R., Oplatkova, Z.K., Silhavy, P., Prokopova, Z. (eds.) Modern Trends and Techniques in Computer Science. Advances in Intelligent Systems and Computing, vol. 285, pp. 53–63. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  14. 14.
    Day, R.H.: Letter to the editoron optimal extracting from a multiple file data storage system: an application of integer programming. Oper. Res. 13(3), 482–494 (1965)CrossRefGoogle Scholar
  15. 15.
    Fisher, M.L., Rosenwein, M.B.: An interactive optimization system for bulk-cargo ship scheduling. Naval Res. Logistics (NRL) 36(1), 27–42 (1989)CrossRefGoogle Scholar
  16. 16.
    Freeman, B.A., Jucker, J.V.: The line balancing problem. J. Ind. Eng. 18, 361–364 (1967)Google Scholar
  17. 17.
    Garfinkel, R.S., Nemhauser, G.L.: Optimal political districting by implicit enumeration techniques. Manage. Sci. 16(8), B495–B508 (1970)CrossRefzbMATHGoogle Scholar
  18. 18.
    Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)CrossRefGoogle Scholar
  19. 19.
    Gouwanda, D., Ponnambalam, S.: Evolutionary search techniques to solve set covering problems. World Acad. Sci. Eng. Tech. 39, 20–25 (2008)Google Scholar
  20. 20.
    Housos, E., Elmroth, T.: Automatic optimization of subproblems in scheduling airline crews. Interfaces 27(5), 68–77 (1997)CrossRefGoogle Scholar
  21. 21.
    Kong, X., Gao, L., Ouyang, H., Li, S.: A simplified binary harmony search algorithm for large scale 0–1 knapsack problems. Expert Syst. Appl. 42, 5337–5355 (2015)CrossRefGoogle Scholar
  22. 22.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer-Verlag, Heidelberg (1996)CrossRefzbMATHGoogle Scholar
  23. 23.
    Ren, Z., Feng, Z., Ke, L., Zhang, Z.: New ideas for applying ant colony optimization to the set covering problem. Comput. & Ind. Eng. 58(4), 774–784 (2010)CrossRefGoogle Scholar
  24. 24.
    Revelle, C., Marks, D., Liebman, J.C.: An analysis of private and public sector location models. Manag. Sci. 16(11), 692–707 (1970)CrossRefzbMATHGoogle Scholar
  25. 25.
    Ribeiro, C.C., Minoux, M., Penna, M.C.: An optimal column-generation-with-ranking algorithm for very large scale set partitioning problems in traffic assignment. Eur. J. Oper. Res. 41(2), 232–239 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    Aickelin, U.: An indirect genetic algorithm for set covering problems. J. Oper. Res. Soc. 53(10), 1118–1126 (2002)CrossRefzbMATHGoogle Scholar
  27. 27.
    Valenzuela, C., Crawford, B., Monfroy, E., Soto, R., Paredes, F.: A 2-level metaheuristic for the set covering problem. Int. J. Comput. Commun. Control 7(2), 377–387 (2012)CrossRefGoogle Scholar
  28. 28.
    Vasko, F.J., Wolf, F.E., Stott, K.L.: Optimal selection of ingot sizes via set covering. Oper. Res. 35(3), 346–353 (1987)CrossRefGoogle Scholar
  29. 29.
    Wang, L., Xu, Y., Mao, Y., Fei, M.: A discrete harmony search algorithm. In: Li, K., Li, X., Ma, S., Irwin, G.W. (eds.) LSMS 2010. CCIS, vol. 98, pp. 37–43. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  30. 30.
    Wang, L., Yang, R., Xu, Y., Niu, Q., Pardalos, P.M., Fei, M.: An improved adaptive binary harmony search algorithm. Inf. Sci. 232, 58–87 (2013)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Zou, D., Gao, L., Li, S., Wu, J.: Solving 0–1 knapsack problem by a novel global harmony search algorithm. Appl. Soft Comput. 11(2), 1556–1564 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Broderick Crawford
    • 1
    • 2
    • 3
    Email author
  • Ricardo Soto
    • 1
    • 4
    • 5
  • Néstor Guzmán
    • 1
  • Franklin Johnson
    • 1
    • 6
  • Fernando Paredes
    • 7
  1. 1.Pontificia Universidad Católica de ValparaísoValparaisoChile
  2. 2.Universidad Central de ChileSantiagoChile
  3. 3.Universidad San SebastiánSantiagoChile
  4. 4.Universidad Autónoma de ChileSantiagoChile
  5. 5.Universidad Cientifica del SurLimaPeru
  6. 6.Universidad de Playa AnchaValparaisoChile
  7. 7.Escuela de Ingeniería IndustrialUniversidad Diego PortalesSantiagoChile

Personalised recommendations