Advertisement

A Filtering Technique for Helping to Solve Sudoku Problems

  • Ricardo Soto
  • Broderick Crawford
  • Cristian GalleguillosEmail author
  • Kathleen Crawford
  • Fernando Paredes
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 528)

Abstract

This paper highlights the current usability issues when solving Sudoku problems. This problem is a well-known puzzle game which consists in assigning numbers in a game board, commonly of \(9 \times 9\) size. The board of the game is composed of 9 columns, 9 rows and 9 \(3 \times 3\) sub-grids; each one containing 9 cells with distinct integers from 1 to 9. A game is completed when all cells have a value assigned, and the previous constraints are satisfied. Some instances are very difficult to solve, to tackle this issue, we have used a filtering technique named Arc Consistency 3 (AC3) from the Constraint Programming domain. This algorithm has revealed which is much related to the strategies employed by users in order to solve the Sudoku instances, but in contrast, this technique is executed in a short time, offering a good resolution guide to the users. In general, filtering techniques make easier solving Sudoku puzzles, providing good information to users for this.

Keywords

Sudoku Constraint programming Arc consistency 

Notes

Acknowledgments

Cristian Galleguillos is supported by Postgraduate Grant Pontificia Universidad Católica de Valparaíso 2015. Ricardo Soto is supported by Grant CONICYT / FONDECYT / INICIACION / 11130459. Broderick Crawford is supported by Grant CONICYT / FONDECYT / REGULAR / 1140897. Fernando Paredes is supported by Grant CONICYT / FONDECYT / REGULAR / 1130455.

References

  1. 1.
    Asif, M.: Solving NP-complete problem using ACO algorithm. In: International Conference on Emerging Technologies, pp. 13–16. IEEE Computer Society (2009)Google Scholar
  2. 2.
    Lewis, R.: Metaheuristics can solve sudoku puzzles. J. Heuristics 13(4), 387–401 (2007)CrossRefGoogle Scholar
  3. 3.
    Lynce, I., Ouaknine, J.: Sudoku as a sat problem. In: International Symposium on Artificial Intelligence and Mathematics (ISAIM) (2006)Google Scholar
  4. 4.
    Mackworth, A.: Consistency in networks of relations. Artif. Intell. 8(1), 99–118 (1977)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Mantere, T., Koljonen, J.: Solving, rating and generating sudoku puzzles with ga. In: IEEE Congress on Evolutionary Computation, pp. 1382–1389. IEEE (2007)Google Scholar
  6. 6.
    Mantere, T., Koljonen, J.: Solving and analyzing sudokus with cultural algorithms. In: 2008 IEEE Congress on Evolutionary Computation. CEC 2008. (IEEE World Congress on Computational Intelligence), pp. 4053–4060, June 2008Google Scholar
  7. 7.
    McGuire, G., Tugemann, B., Civario, G.: There is no 16-clue sudoku: Solving the sudoku minimum number of clues problem. CoRR, abs/1201.0749 (2012)Google Scholar
  8. 8.
    Moraglio, A., Togelius, J.: Geometric particle swarm optimization for the sudoku puzzle. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO 2007, pp. 118–125. ACM, New York, NY, USA (2007)Google Scholar
  9. 9.
    Moraglio, A., Togelius, J., Lucas, S.: Product geometric crossover for the sudoku puzzle. In: IEEE Congress on Evolutionary Computation, pp. 470–476. IEEE Computer Society (2006)Google Scholar
  10. 10.
    Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier, New York (2006)zbMATHGoogle Scholar
  11. 11.
    Simonis, H.: Sudoku as a Constraint Problem. In: Hnich, B., Prosser, P., Smith, B. (eds.) Proceedings 4th International Workshop on Modelling and Reformulating Constraint Satisfaction Problems, pp. 13–27 (2005)Google Scholar
  12. 12.
    Soto, R., Crawford, B., Galleguillos, C., Monfroy, E., Paredes, F.: A hybrid ac3-tabu search algorithm for solving sudoku puzzles. Expert Syst. Appl. 40(15), 5817–5821 (2013)CrossRefGoogle Scholar
  13. 13.
    Soto, R., Crawford, B., Galleguillos, C., Monfroy, E., Paredes, F.: A prefiltered cuckoo search algorithm with geometric operators for solving sudoku problems. Sci. World J. 2014, 12 (2014). cited By (since 1996)2CrossRefGoogle Scholar
  14. 14.
    Yato, T., Seta, T.: Complexity and completeness of finding another solution and its application to puzzles. IEICE Trans. E86–A(5), 1052–1060 (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ricardo Soto
    • 1
    • 2
    • 3
  • Broderick Crawford
    • 1
    • 4
    • 5
  • Cristian Galleguillos
    • 1
    Email author
  • Kathleen Crawford
    • 1
  • Fernando Paredes
    • 6
  1. 1.Pontificia Universidad Católica de ValparaísoValparaísoChile
  2. 2.Universidad Autónoma de ChileSantiagoChile
  3. 3.Universidad Cientifica del SurLimaPeru
  4. 4.Universidad Central de ChileSantiagoChile
  5. 5.Universidad San SebastiánSantiagoChile
  6. 6.Escuela de Ingeniería IndustrialUniversidad Diego PortalesSantiagoChile

Personalised recommendations