Advertisement

The Complexity of Designing and Implementing Metaheuristics

  • Ricardo SotoEmail author
  • Broderick Crawford
  • Rodrigo Olivares
  • Cristian Galleguillos
  • Kathleen Crawford
  • Franklin Johnson
  • Fernando Paredes
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 528)

Abstract

Optimization problems can be found in several real application domains such as engineering, medicine, mathematics, mechanics, physics, mining, games, design, and biology, among others. There exist several techniques to the efficient solving of these problems, which can be organized in two groups: exact and approximate methods. Metaheuristics are one of the most famous and widely used approximate methods for solving optimization problems. Most of them are known for being inspired on interesting behaviors that can be found on the nature, such as the way in which ants, bees and fishes found food, or the way in which fireflies and bats move on the environment. However, solving optimization problems via metaheuristics is not always a simple trip. In this paper, we analyze and discuss from an usability standpoint how the effort needed to design and implement efficient and robust metaheuristics can be conveniently managed and reduced.

Keywords

Optimization problems Metaheuristics Local solution Optimal solution 

Notes

Acknowledgments

Ricardo Soto is supported by Grant CONICYT / FONDECYT / INICIACION / 11130459, Broderick Crawford is supported by Grant CONICYT / FONDECYT / REGULAR/1140897, Fernando Paredes is supported by Grant CONICYT / FONDECYT/REGULAR/1130455 and Rodrigo Olivares & Cristian Galleguillos are supported by Postgraduate Grant Pontificia Universidad Católica de Valparaíso 2015.

References

  1. 1.
    Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)CrossRefGoogle Scholar
  2. 2.
    Crawford, B., Soto, R., Cuesta, R., Olivares-Suárez, M., Johnson, F., Olguín, E.: Two swarm intelligence algorithms for the set covering problem. In ICSOFT-EA 2014 - Proceedings of the 9th International Conference on Software Engineering and Applications, 29–31 August, 2014, Vienna, Austria, pp. 60–69 (2014)Google Scholar
  3. 3.
    Crawford, B., Soto, R., Cuesta, R., Paredes, F.: Application of the artificial bee colony algorithm for solving the set covering problem. Sci. World J. 2014, 8 (2014)CrossRefGoogle Scholar
  4. 4.
    Crawford, B., Soto, R., Cuesta, R., Paredes, F.: Using the bee colony optimization method to solve the weighted set covering problem. In: Stephanidis, C. (ed.) HCI 2014, Part I. CCIS, vol. 434, pp. 493–497. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  5. 5.
    Crawford, B., Soto, R., Olivares-Suárez, M., Paredes, F.: A binary firefly algorithm for the set covering problem. In: Silhavy, R., Senkerik, R., Oplatkova, Z.K., Silhavy, P., Prokopova, Z. (eds.) Modern Trends and Techniques in Computer Science. Advances in Intelligent Systems and Computing, vol. 285, pp. 65–73. Springer International Publishing, Switzerland (2014)CrossRefGoogle Scholar
  6. 6.
    Crawford, B., Soto, R., Olivares-Suárez, M., Paredes, F.: Using the firefly optimization method to solve the weighted set covering problem. In: Stephanidis, C. (ed.) HCI 2014, Part I. CCIS, vol. 434, pp. 509–514. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  7. 7.
    Crawford, B., Soto, R., Olivares-Suárez, M., Paredes, F., Johnson, F.: Binary firefly algorithm for the set covering problem. In: 2014 9th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–5, June 2014Google Scholar
  8. 8.
    Crawford, B., Soto, R., Palma, W., Johnson, F., Paredes, F., Olguín, E.: A 2-level approach for the set covering problem: parameter tuning of artificial bee colony algorithm by using genetic algorithm. In: Tan, Y., Shi, Y., Coello, C.A.C. (eds.) ICSI 2014, Part I. LNCS, vol. 8794, pp. 189–196. Springer, Heidelberg (2014)Google Scholar
  9. 9.
    Cuesta, R., Crawford, B., Soto, R., Paredes, F.: An artificial bee colony algorithm for the set covering problem. In: Silhavy, R., Senkerik, R., Oplatkova, Z.K., Silhavy, P., Prokopova, Z. (eds.) Modern Trends and Techniques in Computer Science. Advances in Intelligent Systems and Computing, vol. 285, pp. 53–63. Springer International Publishing, Switzerland (2014)CrossRefGoogle Scholar
  10. 10.
    Glover, F., Kochengerger, G.: A Handbook of Metaheuristics. Kluwer Academic Publishers, Boston (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ricardo Soto
    • 1
    • 2
    • 3
    Email author
  • Broderick Crawford
    • 1
    • 4
    • 5
  • Rodrigo Olivares
    • 1
  • Cristian Galleguillos
    • 1
  • Kathleen Crawford
    • 1
  • Franklin Johnson
    • 6
  • Fernando Paredes
    • 7
  1. 1.Pontificia Universidad Católica de ValparaísoValparaísoChile
  2. 2.Universidad Autónoma de ChileSantiagoChile
  3. 3.Universidad Cientifica del SurLimaPeru
  4. 4.Universidad Central de ChileSantiagoChile
  5. 5.Universidad San SebastiánSantiagoChile
  6. 6.Universidad de Playa AnchaValparaísoChile
  7. 7.Escuela de Ingeniería IndustrialUniversidad Diego PortalesSantiagoChile

Personalised recommendations