Skip to main content

PET/MR in Children

  • Chapter
  • 1135 Accesses

Abstract

The rapid increase in incidence of diagnosed malignant diseases in children over the last decades, combined with innovations in molecular oncology, neuroimaging, and hybrid imaging, has encouraged researchers and physicians to make a special effort in optimizing technological resources to approach pediatric patients using high-resolution imaging devices with concern about radiation exposure. In this context, a truly hybrid imaging tool, such as simultaneous positron emission tomography/magnetic resonance (PET/MR), presents the appealing advantage to combine serial image technology (MR) and a volumetric (PET) method, at the same time under the same conditions, to define and to assess a pathophysiological pattern for each disease in every single patient aiming to customize therapeutic strategy, therefore improving survival rate. Furthermore, a simultaneous approach enables to overcome some of the limitations of current PET/computed tomography (CT) scan, such as misregistration of attenuation (CT) and emission (PET) images due to spatial and temporal mismatch between CT and PET acquisitions, thus reducing artifactual false-positive result percentage. In addition, the possibility of matching two powerful modalities such as MR and PET opens the way for new challenging clinical applications for disease characterization that are currently under investigation, e.g., multiorgan disorders. In this chapter we will focus on the potential clinical role of PET/MR in pediatric diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Widjaja E, Shammas A, Vali R et al (2013) FDG-PET and magneto encephalography in presurgical workup of children with localization-related nonlesional epilepsy. Epilepsia 54:691–699

    Article  PubMed  Google Scholar 

  2. Gok B, Jallo G, Hayeri R, Wahl R, Aygun N (2013) The evaluation of FDG-PET imaging for epileptogenic focus localization in patients with MRI positive and MRI negative temporal lobe epilepsy. Neuroradiology 55:541–550

    Article  PubMed  Google Scholar 

  3. Seo JH, Holland K, Rose D et al (2011) Multimodality imaging in the surgical treatment of children with nonlesional epilepsy. Neurology 76:41–48

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kim JT, Bai SJ, Choi KO et al (2009) Comparison of various imaging modalities in localization of epileptogenic lesion using epilepsy surgery outcome in pediatric patients. Seizure 18:504–510

    Article  PubMed  Google Scholar 

  5. Lagae L (2000) Cortical malformations: a frequent cause of epilepsy in children. Eur J Pediatr 159:555–562

    Article  CAS  PubMed  Google Scholar 

  6. Duchowny M, Jayakar P, Resnick T et al (1998) Epilepsy surgery in the first three years of life. Epilepsia 39:737–743

    Article  CAS  PubMed  Google Scholar 

  7. Guerrini R (2005) Genetic malformations of the cerebral cortex and epilepsy. Epilepsia 46(Suppl 1):32–37

    Article  CAS  PubMed  Google Scholar 

  8. Hammers A (2012) Epilepsy. In: Grunder G (ed) Molecular imaging in the clinical neurosciences. Humana Press, New York, pp 377–395

    Chapter  Google Scholar 

  9. Kurian M, Spinelli L, Delavelle J et al (2007) Multimodality imaging for focus localization in pediatric pharmacoresistant epilepsy. Epileptic Disord 9:20–31

    CAS  PubMed  Google Scholar 

  10. Villanueva V, Carreno M, Herranz Fernandez JL, Gil-Nagel A (2007) Surgery and electrical stimulation in epilepsy: selection of candidates and results. Neurologist 13:S29–S37

    Article  PubMed  Google Scholar 

  11. Ollenberger GP, Byrne AJ, Berlangieri SU et al (2005) Assessment of the role of FDG PET in the diagnosis and management of children with refractory epilepsy. Eur J Nucl Med Mol Imaging 32:1311–1316

    Article  PubMed  Google Scholar 

  12. Rubí S, Setoain X, Donaire A et al (2011) Validation of FDG-PET/MRI coregistration in nonlesional refractory childhood epilepsy. Epilepsia 52(12):2216–2224

    Article  PubMed  Google Scholar 

  13. Catana C, Drzezga A, Heiss WD, Rosen BR (2012) PET/MRI for neurologic applications. J Nucl Med 53:1916–1925

    Article  PubMed  Google Scholar 

  14. Winston K, Gilles FH, Leviton A, Fulchiero A (1997) Cerebellar gliomas in children. Natl Cancer Inst Monogr 58:833–838

    Google Scholar 

  15. Duffner PJ, Cohen ME (1986) Recent developments in pediatric neuro-oncology. Cancer 15:561–581

    Article  Google Scholar 

  16. Prados M, Levin V (1987) Malignant supratentorial glioma in childhood. Pediatr Neurosci 13:144–151

    Article  CAS  PubMed  Google Scholar 

  17. Gibbs I, Tuamokumo N, Yock T (2006) Role of radiation therapy in pediatric cancer. Hematol Oncol Clin N Am 20:455–470

    Article  Google Scholar 

  18. Kilday JP, Rahman R, Dyer S et al (2009) Pediatric ependymoma: biological perspectives. Mol Cancer Res 7:765–786

    Article  CAS  PubMed  Google Scholar 

  19. Zukotynski KA, Fahey FH, Vajapeyam S et al (2013) Exploratory evaluation of MR permeability with 18F-FDG PET mapping in pediatric brain tumors: a report from the Pediatric Brain Tumor Consortium. J Nucl Med 54:1237–1243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Di Chiro G, DeLaPaz RL, Brooks RA et al (1982) Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology 32:1323–1329

    Article  PubMed  Google Scholar 

  21. Kim S, Salamon N, Jackson HA, Blüml S, Panigrahy A (2010) PET imaging in pediatric neuroradiology: current and future applications. Pediatr Radiol 40:82–96

    Article  PubMed  Google Scholar 

  22. Ogawa T, Inugami A, Hatazawa J et al (1996) Clinical positron tomography for brain tumors: comparison of fludeoxyglucose F18 and L-methy-C-11-methionine. AJNR 17:345–353

    CAS  PubMed  Google Scholar 

  23. Chung JK, Kim YK, Kim SK et al (2002) Usefulness of C-11-methionine PET in the evaluation of brain lesions that are hypo or isometabolic on F-18-FDG PET. Eur J Nucl Med Mol Imaging 29:176–182

    Article  CAS  PubMed  Google Scholar 

  24. Jager PL, Vaalburg W, Pruim J et al (2001) Radiolabelled aminoacids: basic aspects and clinical application in oncology. J Nucl Med 42:432–445

    CAS  PubMed  Google Scholar 

  25. O’Tuama LA, Phillips PC, Strauss LC et al (1990) Two-phase [11C]L-methionine PET in childhood brain tumors. Pediatr Neurol 6:163–170

    Article  PubMed  Google Scholar 

  26. Goo HW, Choi SH, Ghim T et al (2005) Whole-body MR of paediatric malignant tumours: comparison with conventional oncological imaging methods. Pediatr Radiol 35:766–773

    Article  PubMed  Google Scholar 

  27. Armitage JO (2005) Staging non-Hodgkin lymphoma. CA Cancer J Clin 55:368–376

    Article  PubMed  Google Scholar 

  28. Murphy SB (1980) Classification, staging and end results of treatment of childhood non-Hodgkin’s lymphomas: dissimilarities from lymphomas in adults. Semin Oncol 7:332–339

    CAS  PubMed  Google Scholar 

  29. Montravers F, McNamara D, Landman-Parker J et al (2002) [18F]FDG in childhood lymphoma: clinical utility and impact on management. Eur J Nucl Med Mol Imaging 29:1155–1165

    Article  CAS  PubMed  Google Scholar 

  30. London K, Cross S, Onikul E, Dalla-Pozza L, Howman-Giles R (2011) 18F-FDG PET/CT in paediatric lymphoma: comparison with conventional imaging. Eur J Nucl Med Mol Imaging 38:274–284

    Article  PubMed  Google Scholar 

  31. Darge K, Jaramillo D, Siegel MJ (2008) Whole-body MRI in children: current status and future applications. Eur J Radiol 68:289–298

    Article  PubMed  Google Scholar 

  32. Goethals I, Hoste P, De Vriendt C, Smeets P, Verlooy J, Ham H (2010) Time-dependent changes in 18F-FDG activity in the thymus and bone marrow following combination chemotherapy in paediatric patients with lymphoma. Eur J Nucl Med Mol Imaging 37:462–467

    Article  PubMed  Google Scholar 

  33. Mueller WP, Melzer HI, Schmid I, Coppenrath E, Bartenstein P, Pfluger T (2013) The diagnostic value of 18F-FDG PET and MRI in paediatric histiocytosis. Eur J Nucl Med Mol Imaging 40:356–363

    Article  PubMed  Google Scholar 

  34. Grois N, Potschger U, Prosch H et al (2006) Risk factors for diabetes insipidus in Langerhans cell histiocytosis. Pediatr Blood Cancer 46:228–233

    Article  CAS  PubMed  Google Scholar 

  35. Minkov M, Grois N, Heitger A, Potschger U, Westermeier T, Gadner H (2002) Response to initial treatment of multisystem Langerhans cell histiocytosis: an important prognostic indicator. Med Pediatr Oncol 39:581–585

    Article  PubMed  Google Scholar 

  36. Gadner H, Grois N, Arico M et al (2001) A randomized trial of treatment for multisystem Langerhans’ cell histiocytosis. J Pediatr 138:728–734

    Article  CAS  PubMed  Google Scholar 

  37. Schmidt S, Eich G, Geoffray A et al (2008) Extraosseous Langerhans cell histiocytosis in children. Radiographics 28:707–726

    Article  PubMed  Google Scholar 

  38. Kaste SC, Rodriguez-Galindo C, McCarville ME, Shulkin BL (2007) PET-CT in pediatric Langerhans cell histiocytosis. Pediatr Radiol 37:615–622

    Article  PubMed  Google Scholar 

  39. Blum R, Seymour JF, Hicks RJ (2002) Role of 18FDG-positron emission tomography scanning in the management of histiocytosis. Leuk Lymphoma 43:2155–2157

    Article  PubMed  Google Scholar 

  40. Meyer JS, De Camargo B (1998) The role of radiology in the diagnosis and follow-up of Langerhans cell histiocytosis. Hematol Oncol Clin North Am 12:307–326

    Article  CAS  PubMed  Google Scholar 

  41. Phillips M, Allen C, Gerson P, McClain K (2009) Comparison of FDG PET scans to conventional radiography and bone scans in management of Langerhans cell histiocytosis. Pediatr Blood Cancer 52:97–101

    Article  PubMed  Google Scholar 

  42. Balink H, Collins J, Bruyn GA, Gemmel F (2009) F-18 FDG PET/CT in the diagnosis of fever of unknown origin. Clin Nucl Med 34:862–868

    Article  PubMed  Google Scholar 

  43. Crouzet J, Boudousq V, Lechiche C et al (2012) Place of 18F-FDG-PET with computed tomography in the diagnostic algorithm of patients with fever of unknown origin. Eur J Clin Microbiol Infect Dis 31:1727–1733

    Article  CAS  PubMed  Google Scholar 

  44. Berthold LD, Steiner D, Scholz D, Alzen G, Zimmer KP (2013) Imaging of chronic inflammatory bowel disease with 18F-FDG PET in children and adolescents. Klin Padiatr 225:212–217

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Salvatore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Salvatore, M., Nappi, C., Cuocolo, A. (2016). PET/MR in Children. In: Mansi, L., Lopci, E., Cuccurullo, V., Chiti, A. (eds) Clinical Nuclear Medicine in Pediatrics. Springer, Cham. https://doi.org/10.1007/978-3-319-21371-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21371-2_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21370-5

  • Online ISBN: 978-3-319-21371-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics