Advertisement

C-Tests Revisited: Back and Forth with Complexity

  • José Hernández-OralloEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9205)

Abstract

We explore the aggregation of tasks by weighting them using a difficulty function that depends on the complexity of the (acceptable) policy for the task (instead of a universal distribution over tasks or an adaptive test). The resulting aggregations and decompositions are (now retrospectively) seen as the natural (and trivial) interactive generalisation of the C-tests.

Keywords

Intelligence evaluation Artificial intelligence C-tests Algorithmic information theory Universal psychometrics Agent response curve 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environment: An evaluation platform for general agents. Journal of Artificial Intelligence Research 47, 253–279 (2013)Google Scholar
  2. 2.
    Hernández-Orallo, J.: Beyond the Turing Test. J. Logic, Language & Information 9(4), 447–466 (2000)CrossRefzbMATHGoogle Scholar
  3. 3.
    Hernández-Orallo, J.: Computational measures of information gain and reinforcement in inference processes. AI Communications 13(1), 49–50 (2000)zbMATHGoogle Scholar
  4. 4.
    Hernández-Orallo, J.: On the computational measurement of intelligence factors. In: Meystel, A. (ed.) Performance metrics for intelligent systems workshop, pp. 1–8. National Institute of Standards and Technology, Gaithersburg (2000)Google Scholar
  5. 5.
    Hernández-Orallo, J.: AI evaluation: past, present and future (2014). arXiv preprint arXiv:1408.6908
  6. 6.
    Hernández-Orallo, J.: On environment difficulty and discriminating power. Autonomous Agents and Multi-Agent Systems, 1–53 (2014). http://dx.doi.org/10.1007/s10458-014-9257-1
  7. 7.
    Hernández-Orallo, J., Dowe, D.L.: Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence 174(18), 1508–1539 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hernández-Orallo, J., Dowe, D.L., Hernández-Lloreda, M.V.: Universal psychometrics: Measuring cognitive abilities in the machine kingdom. Cognitive Systems Research 27, 50–74 (2014)CrossRefGoogle Scholar
  9. 9.
    Hernández-Orallo, J., Minaya-Collado, N.: A formal definition of intelligence based on an intensional variant of Kolmogorov complexity. In: Proc. Intl. Symposium of Engineering of Intelligent Systems (EIS 1998), pp. 146–163. ICSC Press (1998)Google Scholar
  10. 10.
    Hibbard, B.: Bias and no free lunch in formal measures of intelligence. Journal of Artificial General Intelligence 1(1), 54–61 (2009)CrossRefGoogle Scholar
  11. 11.
    Legg, S., Hutter, M.: Universal intelligence: A definition of machine intelligence. Minds and Machines 17(4), 391–444 (2007)CrossRefGoogle Scholar
  12. 12.
    Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications, 3 edn. Springer-Verlag (2008)Google Scholar
  13. 13.
    Schaul, T.: An extensible description language for video games. IEEE Transactions on Computational Intelligence and AI in Games PP(99), 1–1 (2014)Google Scholar
  14. 14.
    Solomonoff, R.J.: A formal theory of inductive inference. Part I. Information and control 7(1), 1–22 (1964)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.DSICUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations