Skip to main content

Issues in Temporal and Causal Inference

  • Conference paper
  • First Online:
Artificial General Intelligence (AGI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9205))

Included in the following conference series:

Abstract

This paper discusses several key issues in temporal and causal inference in the context of AGI. The main conclusions are: (1) the representation of temporal information should take multiple forms; (2) classical conditioning can be carried out as temporal inference; (3) causal inference can be realized without a predefined causal relation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allen, J.F.: Towards a general theory of action and time. Artificial Intelligence 23(2), 123–154 (1984)

    Article  MATH  Google Scholar 

  2. Allen, J.F.: Time and time again: The many ways to represent time. International Journal of Intelligent Systems 6(4), 341–356 (1991)

    Article  Google Scholar 

  3. Anderson, J.J., Bracis, C., Goodwin, R.A.: Pavlovian conditioning from a foraging perspective. In: Proceedings of the 32nd Annual Conference of the Cognitive Science Society, pp. 1276–1281 (2010)

    Google Scholar 

  4. Cheng, P.W.: From covariation to causation: a causal power theory. Psychological Review 104(2), 367–405 (1997)

    Article  Google Scholar 

  5. Elgot-Drapkin, J., Perlis, D.: Reasoning situated in time I: Basic concepts. Journal of Experimental & Theoretical Artificial Intelligence 2, 75–98 (1990)

    Article  Google Scholar 

  6. Franklin, S.: A foundational architecture for artificial general intelligence. In: Goertzel, B., Wang, P. (eds.) Advance of Artificial General Intelligence, pp. 36–54. IOS Press, Amsterdam (2007)

    Google Scholar 

  7. Franklin, S., Strain, S., McCall, R., Baars, B.: Conceptual commitments of the LIDA model of cognition. Journal of Artificial General Intelligence 4(2), 1–22 (2013)

    Article  Google Scholar 

  8. Gallistel, C.R., Gibbon, J.: Time, rate, and conditioning. Psychological Review 107(2), 289–344 (2000)

    Article  Google Scholar 

  9. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories. Artificial Intelligence 153, 49–104 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goodman, N.D., Ullman, T.D., Tenenbaum, J.B.: Learning a theory of causality. Psychological Review (2011)

    Google Scholar 

  11. Halpern, J.Y., Pearl, J.: Causes and explanations: A structural-model approach. Part I: Causes. The British Journal for the Philosophy of Science 56(4), 843 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ismail, H.O., Shapiro, S.C.: Two problems with reasoning and acting in time. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Seventh International Conference, pp. 355–365 (2000)

    Google Scholar 

  13. Kowalski, R.: Logic for Problem Solving. North Holland, New York (1979)

    MATH  Google Scholar 

  14. Laird, J.E.: The Soar Cognitive Architecture. MIT Press, Cambridge (2012)

    Google Scholar 

  15. van Lambalgen, M., Hamm, F.: The proper treatment of events. Blackwell Publishing, Malden (2005)

    Book  Google Scholar 

  16. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of artificial intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 4, pp. 463–502. Edinburgh University Press, Edinburgh (1969)

    Google Scholar 

  17. Newell, A.: Unified Theories of Cognition. Harvard University Press, Cambridge (1990)

    Google Scholar 

  18. Nivel, E., Thórisson, K.R., Steunebrink, B.R., Dindo, H., Pezzulo, G., Rodriguez, M., Hernandez, C., Ognibene, D., Schmidhuber, J., Sanz, R., Helgason, H.P., Chella, A., Jonsson, G.K.: Bounded recursive self-improvement. CoRR abs/1312.6764 (2013)

  19. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  20. Peirce, C.S.: Collected Papers of Charles Sanders Peirce, vol. 2. Harvard University Press, Cambridge (1931)

    Google Scholar 

  21. Piaget, J.: The construction of reality in the child. Basic Books, New York (1954)

    Book  Google Scholar 

  22. Pratt-Hartmann, I.: Temporal prepositions and their logic. Artificial Intelligence 166, 1–36 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rattigan, M.J., Maier, M., Jensen, D.: Relational blocking for causal discovery. In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence (2011)

    Google Scholar 

  24. Rescorla, R., Wagner, A.: A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and non reinforcement. In: Black, A., Prokasy, W. (eds.) Classical Conditioning II, pp. 64–99. Appleton-Century-Crofts, New York (1972)

    Google Scholar 

  25. Rosenbloom, P.S.: Rethinking cognitive architecture via graphical models. Cognitive Systems Research 12, 198–209 (2011)

    Article  Google Scholar 

  26. Shoham, Y.: Nonmonotonic reasoning and causation. Cognitive Science 14, 213–252 (1990)

    Article  Google Scholar 

  27. Srivastava, N., Schrater, P.: Classical conditioning via inference over observable situation contexts. In: Proceedings of the 36th Annual Meeting of the Cognitive Science Society, pp. 1503–1508 (2014)

    Google Scholar 

  28. Sutton, R.S., Barto, A.G.: Time-derivative models of Pavlovian reinforcement. In: Gabriel, M., Moore, J. (eds.) Learning and Computational Neuroscience: Foundations of Adaptive Networks, pp. 497–537. MIT Press (1990)

    Google Scholar 

  29. Vila, L.: A survey on temporal reasoning in artificial intelligence. AI Communications 7(1), 4–28 (1994)

    Google Scholar 

  30. Wang, P.: Experience-grounded semantics: a theory for intelligent systems. Cognitive Systems Research 6(4), 282–302 (2005)

    Article  Google Scholar 

  31. Wang, P.: Rigid Flexibility: The Logic of Intelligence. Springer, Dordrecht (2006)

    Google Scholar 

  32. Wang, P.: Non-Axiomatic Logic: A Model of Intelligent Reasoning. World Scientific, Singapore (2013)

    Book  Google Scholar 

  33. Williamson, J.: Causality. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 14, pp. 95–126. Springer (2007)

    Google Scholar 

  34. Xu, Y., Wang, P.: The frame problem, the relevance problem, and a package solution to both. Synthese (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, P., Hammer, P. (2015). Issues in Temporal and Causal Inference. In: Bieger, J., Goertzel, B., Potapov, A. (eds) Artificial General Intelligence. AGI 2015. Lecture Notes in Computer Science(), vol 9205. Springer, Cham. https://doi.org/10.1007/978-3-319-21365-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21365-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21364-4

  • Online ISBN: 978-3-319-21365-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics