Advertisement

Merits and Limits of Tractography Techniques for the Uninitiated

  • Christopher Nimsky
  • Miriam Bauer
  • Barbara Carl
Part of the Advances and Technical Standards in Neurosurgery book series (NEUROSURGERY, volume 43)

Abstract

The implementation of fiber tracking or tractography modules in commercial navigation systems resulted in a broad availability of visualization possibilities for major white matter tracts in the neurosurgical community. Unfortunately the implemented algorithms and tracking approaches do not represent the state of the art of tractography strategies and may lead to false tracking results. The application of advanced tractography techniques for neurosurgical procedures poses even additional challenges that relate to effects of the individual anatomy that might be altered by edema and tumor, to stereotactic inaccuracies due to image distortion, as well as to registration inaccuracies and brain shift.

Keywords

Diffusion modeling Diffusion-weighted magnetic resonance imaging Fiber tracking Functional navigation Major white matter tracts Tractography 

References

  1. 1.
    Abdullah KG, Lubelski D, Nucifora PG, Brem S (2013) Use of diffusion tensor imaging in glioma resection. Neurosurg Focus 34, E1CrossRefPubMedGoogle Scholar
  2. 2.
    Abhinav K, Pathak S, Richardson RM, Engh J, Gardner P, Yeh FC, Friedlander RM, Fernandez-Miranda JC (2014) Application of high-definition fiber tractography in the management of supratentorial cavernous malformations: a combined qualitative and quantitative approach. Neurosurgery 74:668–680; discussion 680–681CrossRefPubMedGoogle Scholar
  3. 3.
    Abhinav K, Yeh FC, Pathak S, Suski V, Lacomis D, Friedlander RM, Fernandez-Miranda JC (2014) Advanced diffusion MRI fiber tracking in neurosurgical and neurodegenerative disorders and neuroanatomical studies: a review. Biochim Biophys Acta 1842:2286–2297CrossRefPubMedGoogle Scholar
  4. 4.
    Alexander AL, Wu YC, Venkat PC (2006) Hybrid diffusion imaging (HYDI). Conf Proc IEEE Eng Med Biol Soc 1:2245–2248CrossRefPubMedGoogle Scholar
  5. 5.
    Assemlal HE, Tschumperle D, Brun L, Siddiqi K (2011) Recent advances in diffusion MRI modeling: angular and radial reconstruction. Med Image Anal 15:369–396CrossRefPubMedGoogle Scholar
  6. 6.
    Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103:247–254CrossRefPubMedGoogle Scholar
  7. 7.
    Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625–632CrossRefPubMedGoogle Scholar
  8. 8.
    Berman JI, Berger MS, Chung SW, Nagarajan SS, Henry RG (2007) Accuracy of diffusion tensor magnetic resonance imaging tractography assessed using intraoperative subcortical stimulation mapping and magnetic source imaging. J Neurosurg 107:488–494CrossRefPubMedGoogle Scholar
  9. 9.
    Bi WL, Chiocca EA (2014) From localization to pathways: the continuing evolution of diffusion tensor imaging. World Neurosurg 82:e47–e48CrossRefPubMedGoogle Scholar
  10. 10.
    Bucci M, Mandelli ML, Berman JI, Amirbekian B, Nguyen C, Berger MS, Henry RG (2013) Quantifying diffusion MRI tractography of the corticospinal tract in brain tumors with deterministic and probabilistic methods. Neuroimage Clin 3:361–368PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Campbell JS, Pike GB (2014) Potential and limitations of diffusion MRI tractography for the study of language. Brain Lang 131:65–73CrossRefPubMedGoogle Scholar
  12. 12.
    Chang EF, Raygor KP, Berger MS (2015) Contemporary model of language organization: an overview for neurosurgeons. J Neurosurg 122:250–261CrossRefPubMedGoogle Scholar
  13. 13.
    Chen X, Weigel D, Ganslandt O, Buchfelder M, Nimsky C (2009) Prediction of visual field deficits by diffusion tensor imaging in temporal lobe epilepsy surgery. Neuroimage 45:286–297CrossRefPubMedGoogle Scholar
  14. 14.
    Cho JM, Kim EH, Kim J, Lee SK, Kim SH, Lee KS, Chang JH (2014) Clinical use of diffusion tensor image-merged functional neuronavigation for brain tumor surgeries: review of preoperative, intraoperative, and postoperative data for 123 cases. Yonsei Med J 55:1303–1309PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Chou MC, Huang TY, Chung HW, Hsieh TJ, Chang HC, Chen CY (2013) Q-ball imaging with PROPELLER EPI acquisition. NMR Biomed 26:1723–1732CrossRefPubMedGoogle Scholar
  16. 16.
    Chung HW, Chou MC, Chen CY (2011) Principles and limitations of computational algorithms in clinical diffusion tensor MR tractography. AJNR Am J Neuroradiol 32:3–13CrossRefPubMedGoogle Scholar
  17. 17.
    Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS, McKinstry RC, Burton H, Raichle ME (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A 96:10422–10427PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Dell’Acqua F, Catani M (2012) Structural human brain networks: hot topics in diffusion tractography. Curr Opin Neurol 25:375–383PubMedGoogle Scholar
  19. 19.
    Dimou S, Battisti RA, Hermens DF, Lagopoulos J (2013) A systematic review of functional magnetic resonance imaging and diffusion tensor imaging modalities used in presurgical planning of brain tumour resection. Neurosurg Rev 36:205–214; discussion 214CrossRefPubMedGoogle Scholar
  20. 20.
    Duffau H (2014) The dangers of magnetic resonance imaging diffusion tensor tractography in brain surgery. World Neurosurg 81:56–58CrossRefPubMedGoogle Scholar
  21. 21.
    Duffau H (2014) Diffusion tensor imaging is a research and educational tool, but not yet a clinical tool. World Neurosurg 82:e43–e45CrossRefPubMedGoogle Scholar
  22. 22.
    Farquharson S, Tournier JD, Calamante F, Fabinyi G, Schneider-Kolsky M, Jackson GD, Connelly A (2013) White matter fiber tractography: why we need to move beyond DTI. J Neurosurg 118:1367–1377CrossRefPubMedGoogle Scholar
  23. 23.
    Feigl GC, Hiergeist W, Fellner C, Schebesch KM, Doenitz C, Finkenzeller T, Brawanski A, Schlaier J (2014) Magnetic resonance imaging diffusion tensor tractography: evaluation of anatomic accuracy of different fiber tracking software packages. World Neurosurg 81:144–150CrossRefPubMedGoogle Scholar
  24. 24.
    Fillard P, Descoteaux M, Goh A, Gouttard S, Jeurissen B, Malcolm J, Ramirez-Manzanares A, Reisert M, Sakaie K, Tensaouti F, Yo T, Mangin JF, Poupon C (2011) Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom. Neuroimage 56:220–234CrossRefPubMedGoogle Scholar
  25. 25.
    Golby AJ, Kindlmann G, Norton I, Yarmarkovich A, Pieper S, Kikinis R (2011) Interactive diffusion tensor tractography visualization for neurosurgical planning. Neurosurgery 68:496–505PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Hastreiter P, Rezk-Salama C, Soza G, Bauer M, Greiner G, Fahlbusch R, Ganslandt O, Nimsky C (2004) Strategies for brain shift evaluation. Med Image Anal 8:447–464CrossRefPubMedGoogle Scholar
  27. 27.
    Irfanoglu MO, Walker L, Sarlls J, Marenco S, Pierpaoli C (2012) Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results. Neuroimage 61:275–288CrossRefPubMedGoogle Scholar
  28. 28.
    Jansons KM, Alexander DC (2003) Persistent Angular Structure: new insights from diffusion MRI data. Dummy version. Inf Process Med Imaging 18:672–683CrossRefPubMedGoogle Scholar
  29. 29.
    Jbabdi S, Johansen-Berg H (2011) Tractography: where do we go from here? Brain Connect 1:169–183PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Jeurissen B, Tournier JD, Dhollander T, Connelly A, Sijbers J (2014) Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. Neuroimage 103:411–426CrossRefPubMedGoogle Scholar
  31. 31.
    Jones DK, Knosche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73:239–254CrossRefPubMedGoogle Scholar
  32. 32.
    Jones DK, Simmons A, Williams SC, Horsfield MA (1999) Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI. Magn Reson Med 42:37–41CrossRefPubMedGoogle Scholar
  33. 33.
    Kamali A, Hasan KM (2014) The importance of using a proper technique and accurate seeding of regions-of-interest in diffusion tensor tractography. J Neurol Sci 339:235–236CrossRefPubMedGoogle Scholar
  34. 34.
    Kinoshita M, Yamada K, Hashimoto N, Kato A, Izumoto S, Baba T, Maruno M, Nishimura T, Yoshimine T (2005) Fiber-tracking does not accurately estimate size of fiber bundle in pathological condition: initial neurosurgical experience using neuronavigation and subcortical white matter stimulation. Neuroimage 25:424–429CrossRefPubMedGoogle Scholar
  35. 35.
    Kuhnt D, Bauer MH, Egger J, Richter M, Kapur T, Sommer J, Merhof D, Nimsky C (2013) Fiber tractography based on diffusion tensor imaging compared with high-angular-resolution diffusion imaging with compressed sensing: initial experience. Neurosurgery 72(Suppl 1):165–175PubMedCentralPubMedGoogle Scholar
  36. 36.
    Kuhnt D, Bauer MH, Sommer J, Merhof D, Nimsky C (2013) Optic radiation fiber tractography in glioma patients based on high angular resolution diffusion imaging with compressed sensing compared with diffusion tensor imaging – initial experience. PLoS One 8, e70973PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Landman BA, Bogovic JA, Wan H, El Zahraa ElShahaby F, Bazin PL, Prince JL (2012) Resolution of crossing fibers with constrained compressed sensing using diffusion tensor MRI. Neuroimage 59:2175–2186PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Lerner A, Mogensen MA, Kim PE, Shiroishi MS, Hwang DH, Law M (2014) Clinical applications of diffusion tensor imaging. World Neurosurg 82:96–109CrossRefPubMedGoogle Scholar
  39. 39.
    Maesawa S, Fujii M, Nakahara N, Watanabe T, Wakabayashi T, Yoshida J (2010) Intraoperative tractography and motor evoked potential (MEP) monitoring in surgery for gliomas around the corticospinal tract. World Neurosurg 74:153–161CrossRefPubMedGoogle Scholar
  40. 40.
    Mandelli ML, Berger MS, Bucci M, Berman JI, Amirbekian B, Henry RG (2014) Quantifying accuracy and precision of diffusion MR tractography of the corticospinal tract in brain tumors. J Neurosurg 121:349–358CrossRefPubMedGoogle Scholar
  41. 41.
    Mangin JF, Fillard P, Cointepas Y, Le Bihan D, Frouin V, Poupon C (2013) Toward global tractography. Neuroimage 80:290–296CrossRefPubMedGoogle Scholar
  42. 42.
    Margulies DS, Bottger J, Watanabe A, Gorgolewski KJ (2013) Visualizing the human connectome. Neuroimage 80:445–461CrossRefPubMedGoogle Scholar
  43. 43.
    Merhof D, Soza G, Stadlbauer A, Greiner G, Nimsky C (2007) Correction of susceptibility artifacts in diffusion tensor data using non-linear registration. Med Image Anal 11:588–603CrossRefPubMedGoogle Scholar
  44. 44.
    Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269CrossRefPubMedGoogle Scholar
  45. 45.
    Nabavi A, Black PM, Gering DT, Westin CF, Mehta V, Pergolizzi RS Jr, Ferrant M, Warfield SK, Hata N, Schwartz RB, Wells WM 3rd, Kikinis R, Jolesz FA (2001) Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 48:787–797; discussion 797–798PubMedGoogle Scholar
  46. 46.
    Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R (2000) Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 47:1070–1079; discussion 1079–1080CrossRefPubMedGoogle Scholar
  47. 47.
    Nimsky C, Ganslandt O, Fahlbusch R (2006) Implementation of fiber tract navigation. Neurosurgery 58:ONS-292–ONS-303; discussion ONS-303–4CrossRefGoogle Scholar
  48. 48.
    Nimsky C, Ganslandt O, Hastreiter P, Wang R, Benner T, Sorensen AG, Fahlbusch R (2005) Intraoperative diffusion-tensor MR imaging: shifting of white matter tracts during neurosurgical procedures–initial experience. Radiology 234:218–225CrossRefPubMedGoogle Scholar
  49. 49.
    Nimsky C, Ganslandt O, Hastreiter P, Wang R, Benner T, Sorensen AG, Fahlbusch R (2005) Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery. Neurosurgery 56:130–137; discussion 138PubMedGoogle Scholar
  50. 50.
    Nimsky C, Ganslandt O, Kober H, Moller M, Ulmer S, Tomandl B, Fahlbusch R (1999) Integration of functional magnetic resonance imaging supported by magnetoencephalography in functional neuronavigation. Neurosurgery 44:1249–1255; discussion 1255–1256PubMedGoogle Scholar
  51. 51.
    Nimsky C, Ganslandt O, Merhof D, Sorensen AG, Fahlbusch R (2006) Intraoperative visualization of the pyramidal tract by diffusion-tensor-imaging-based fiber tracking. Neuroimage 30:1219–1229CrossRefPubMedGoogle Scholar
  52. 52.
    Nimsky C, Ganslandt O, Weigel D, Keller B, Stadbauer A, Akutsu H, Hammen T, Buchfelder M (2008) Intraoperative tractography and neuronavigation of the pyramidal tract. Jpn J Neurosurg 17:21–26Google Scholar
  53. 53.
    O’Donnell LJ, Pasternak O (2015) Does diffusion MRI tell us anything about the white matter? An overview of methods and pitfalls. Schizophr Res 161:133–141CrossRefPubMedGoogle Scholar
  54. 54.
    Ohue S, Kohno S, Inoue A, Yamashita D, Harada H, Kumon Y, Kikuchi K, Miki H, Ohnishi T (2012) Accuracy of diffusion tensor magnetic resonance imaging-based tractography for surgery of gliomas near the pyramidal tract: a significant correlation between subcortical electrical stimulation and postoperative tractography. Neurosurgery 70:283–293; discussion 294CrossRefPubMedGoogle Scholar
  55. 55.
    Ottenhausen M, Krieg SM, Meyer B, Ringel F (2015) Functional preoperative and intraoperative mapping and monitoring: increasing safety and efficacy in glioma surgery. Neurosurg Focus 38, E3CrossRefPubMedGoogle Scholar
  56. 56.
    Piper RJ, Yoong MM, Kandasamy J, Chin RF (2014) Application of diffusion tensor imaging and tractography of the optic radiation in anterior temporal lobe resection for epilepsy: a systematic review. Clin Neurol Neurosurg 124:59–65CrossRefPubMedGoogle Scholar
  57. 57.
    Potgieser AR, Wagemakers M, van Hulzen AL, de Jong BM, Hoving EW, Groen RJ (2014) The role of diffusion tensor imaging in brain tumor surgery: a review of the literature. Clin Neurol Neurosurg 124:51–58CrossRefPubMedGoogle Scholar
  58. 58.
    Soares JM, Marques P, Alves V, Sousa N (2013) A hitchhiker’s guide to diffusion tensor imaging. Front Neurosci 7:31PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Spena G, Panciani PP, Fontanella MM (2015) Resection of supratentorial gliomas: the need to merge microsurgical technical cornerstones with modern functional mapping concepts. An overview. Neurosurg Rev 38:59–70CrossRefPubMedGoogle Scholar
  60. 60.
    Stadlbauer A, Hammen T, Buchfelder M, Bachmair J, Dorfler A, Nimsky C, Ganslandt O (2012) Differences in metabolism of fiber tract alterations in gliomas: a combined fiber density mapping and magnetic resonance spectroscopic imaging study. Neurosurgery 71:454–463CrossRefPubMedGoogle Scholar
  61. 61.
    Stadlbauer A, Hammen T, Grummich P, Buchfelder M, Kuwert T, Dorfler A, Nimsky C, Ganslandt O (2011) Classification of peritumoral fiber tract alterations in gliomas using metabolic and structural neuroimaging. J Nucl Med 52:1227–1234CrossRefPubMedGoogle Scholar
  62. 62.
    Thomas C, Ye FQ, Irfanoglu MO, Modi P, Saleem KS, Leopold DA, Pierpaoli C (2014) Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci U S A 111:16574–16579PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Tournier JD, Mori S, Leemans A (2011) Diffusion tensor imaging and beyond. Magn Reson Med 65:1532–1556PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Tuch DS (2004) Q-ball imaging. Magn Reson Med 52:1358–1372CrossRefPubMedGoogle Scholar
  65. 65.
    Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ (2002) High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med 48:577–582CrossRefPubMedGoogle Scholar
  66. 66.
    Vos SB, Jones DK, Jeurissen B, Viergever MA, Leemans A (2012) The influence of complex white matter architecture on the mean diffusivity in diffusion tensor MRI of the human brain. Neuroimage 59:2208–2216CrossRefPubMedGoogle Scholar
  67. 67.
    Wedeen VJ, Wang RP, Schmahmann JD, Benner T, Tseng WY, Dai G, Pandya DN, Hagmann P, D’Arceuil H, de Crespigny AJ (2008) Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage 41:1267–1277CrossRefPubMedGoogle Scholar
  68. 68.
    Winston GP, Daga P, White MJ, Micallef C, Miserocchi A, Mancini L, Modat M, Stretton J, Sidhu MK, Symms MR, Lythgoe DJ, Thornton J, Yousry TA, Ourselin S, Duncan JS, McEvoy AW (2014) Preventing visual field deficits from neurosurgery. Neurology 83:604–611PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Zemmoura I, Serres B, Andersson F, Barantin L, Tauber C, Filipiak I, Cottier JP, Venturini G, Destrieux C (2014) FIBRASCAN: a novel method for 3D white matter tract reconstruction in MR space from cadaveric dissection. Neuroimage 103:106–118CrossRefPubMedGoogle Scholar
  70. 70.
    Zhang H, Wang Y, Lu T, Qiu B, Tang Y, Ou S, Tie X, Sun C, Xu K, Wang Y (2013) Differences between generalized q-sampling imaging and diffusion tensor imaging in the preoperative visualization of the nerve fiber tracts within peritumoral edema in brain. Neurosurgery 73:1044–1053; discussion 1053CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christopher Nimsky
    • 1
  • Miriam Bauer
    • 1
  • Barbara Carl
    • 1
  1. 1.Department of NeurosurgeryUniversity MarburgMarburgGermany

Personalised recommendations