Skip to main content

Algebraic Quantum Field Theory in Curved Spacetimes

  • Chapter
  • First Online:

Part of the book series: Mathematical Physics Studies ((MPST))

Abstract

This chapter sets out the framework of algebraic quantum field theory in curved spacetimes, based on the idea of local covariance. In this framework, a quantum field theory is modelled by a functor from a category of spacetimes to a category of (\(C^*\))-algebras obeying supplementary conditions. Among other things: (a) the key idea of relative Cauchy evolution is described in detail, and related to the stress-energy tensor; (b) a systematic ‘rigidity argument’ is used to generalise results from flat to curved spacetimes; (c) a detailed discussion of the issue of selection of physical states is given, linking notions of stability at microscopic, mesoscopic and macroscopic scales; (d) the notion of subtheories and global gauge transformations are formalised; (e) it is shown that the general framework excludes the possibility of there being a single preferred state in each spacetime, if the choice of states is local and covariant. Many of the ideas are illustrated by the example of the free Klein–Gordon theory, which is given a new ‘universal definition’.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We adopt signature convention \(+-\cdots -\) for the metric and in general adopt the conventions used in Chaps. 3, 5 and 6.

  2. 2.

    The algebra \({\mathscr {A}}({\varvec{M}})\) is simple (and not the zero algebra!), so \({\mathscr {A}}(\psi )\) either has trivial kernel or full kernel; the latter case is excluded because \({\mathscr {A}}(\psi )\mathbf {1}_{{\mathscr {A}}({\varvec{M}})}=\mathbf {1}_{{\mathscr {A}}({\varvec{N}})}\ne 0\).

  3. 3.

    An initial object in a category \({{{\mathbf {\mathsf{{C}}}}}}\) is an object I with the property that there is, to each object C of \({{{\mathbf {\mathsf{{C}}}}}}\), exactly one morphism from I to C.

  4. 4.

    Alternatively, and perhaps more in the spirit of a categorical description, one might say that the morphism \({\mathscr {A}}(\iota _{{\varvec{M}};O})\), regarded as defining a subobject of \({\mathscr {A}}({\varvec{M}})\), should be the focus here [69].

  5. 5.

    In a general categorical setting, one would employ the categorical union of the \({\mathscr {A}}^{\text {kin}}({\varvec{M}};O_i)\).

  6. 6.

    Some authors, notably Penrose [123] and Geroch [83], define the Cauchy development with timelike curves of various types. We follow [8, 90, 119, 161]. Many authors only define the Cauchy development for achronal sets. The fact that \(D_{\varvec{M}}(O)\) is open is most easily seen using limit curves cf. [8, Prop. 3.31] or [90, Lem. 6.2.1].

  7. 7.

    The orientation need not be changed when the metric changes; recall that \({\mathfrak {o}}\) is a component of the nonzero smooth n-forms, and not e.g., the volume form.

  8. 8.

    It is natural to write \({{{\mathbf {\mathsf{{T}}}}}}_{\varvec{M}}(\pounds _X g)=-2(\nabla \cdot {{{\mathbf {\mathsf{{T}}}}}}_{\varvec{M}})(X)\), regarding the divergence in a weak sense.

  9. 9.

    Decompose \(f=f_0 + P_{\varvec{M}}f_1\), where \(f_0\) is supported in the image of \({\mathcal {M}}^+\), and \(f_1\in {\mathscr {D}}({\varvec{M}})\). As \(\varPhi _{\varvec{M}}(f)=\varPhi _{\varvec{M}}(f_0)\), we may apply (4.19) to \(f_0\) and then use the fact that \(E_{\varvec{M}}f_0=E_{\varvec{M}}f\).

  10. 10.

    This result differs by a sign from that in [24] (and repeated e.g., in [69, 70]). The source of the difference arises on p. 61 of [24], where the action of an ‘advanced’ Green function is taken to have support in the causal future of the source. The sign error does not affect the results of [69, 70].

  11. 11.

    By default, all \(*\)-algebras here are unital, i.e. they have a unit element for the algebra product.

  12. 12.

    Note that \({\mathscr {S}}\), or its opposite covariant functor \({\mathscr {S}}^{\text {op}}:{{{\mathbf {\mathsf{{Loc}}}}}}\rightarrow {{{\mathbf {\mathsf{{Stsp}}}}}}^{\text {op}}\), contains all the information in \({\mathscr {A}}\), and could be used by itself to specify the theory in full—this is done e.g., in [48, 54].

  13. 13.

    Our convention on Fourier transforms of compactly supported distributions is (in Minkowski space) \(\hat{u}(k)=u(e_k)\), where \(e_k(x)=e^{ik_\mu x^\mu }\); this is extended to manifolds using coordinate charts.

  14. 14.

    Recall that \({\mathfrak {t}}\), \({\mathfrak {o}}\) and \({\mathfrak w}\) are all regarded as connected components of certain sets of nowhere zero forms; by \({\mathfrak {t}}\wedge {\mathfrak w}\) we denote the set of all possible exterior products from within \({\mathfrak {t}}\) and \({\mathfrak w}\).

  15. 15.

    Here, we use the stability of (multi)-diamonds under \({{{\mathbf {\mathsf{{Loc}}}}}}\) morphisms  [25, Lem. 2.8].

  16. 16.

    The same arguments could be applied to more general smearings of the field-strength.

  17. 17.

    Of course, each \(\varPhi _i\) is contained in the local algebra for regions containing the 2-surfaces \(S_i\).

  18. 18.

    The preorder is not a partial order, because \((S_1,T_1)\prec (S_2,T_2)\prec (S_1,T_1)\) implies \(D_{\varvec{M}}(S_1)=D_{\varvec{M}}(S_2)\) and \(D_{\varvec{M}}(T_1)=D_{\varvec{M}}(T_2)\), but not necessarily \(S_1=S_2\) and \(T_1=T_2\).

  19. 19.

    That is, we require \({\mathcal {R}}_S\varOmega _\omega \) to be dense in \(\mathscr {H}_\omega \) and \({\mathcal {R}}_T\ni A\mapsto A\varOmega _\omega \in \mathscr {H}_\omega \) to be injective.

  20. 20.

    In Hilbert-space representations, \({{{\mathbf {\mathsf{{T}}}}}}_{\varvec{M}}[h]\) is an unbounded operator, one also has to consider the domain of algebra elements A for which the commutator can be formed, or in which precise mathematical sense the commutator is to be understood.

  21. 21.

    In fact, the result on the Hadamard property of ground states and KMS-states on ultrastatic spacetimes holds for more general types of quantized linear fields, and more generally also on static (not necessarily ultrastatic) spacetimes.

  22. 22.

    While the results in [68] have only been established for compact \(\varSigma \), the results could be extended to noncompact \(\varSigma \) upon making suitable integrability assumptions on \(c_{{\varvec{M}}}(f,\mathbf{x})\) with respect to \(\mathbf{x} \in \varSigma \).

  23. 23.

    The reader might wonder why (4.43) is not adopted for \({\text {Fld}}({\mathscr {D}},{\mathscr {A}})\) in place of (4.42). The reason is that \(\varPhi ^*\varPhi \) is a positive element of \({\text {Fld}}({\mathscr {D}},{\mathscr {A}})\) in the sense that \((\varPhi ^*\varPhi )_{\varvec{M}}(f) = \varPhi _{\varvec{M}}(f)^*\varPhi _{\varvec{M}}(f)\) is a positive element in \({\mathscr {A}}({\varvec{M}})\) for every \(f\in {\mathscr {D}}({\varvec{M}})\), while \(\varPhi ^\star \varPhi \) need not be positive in this way. Order structure and functional calculus for abstract fields is discussed in [52].

  24. 24.

    Somewhat more technically, \({\mathscr {D}}_\rho ({\varvec{M}},\sigma )\) may be regarded as the space of compactly supported sections of the bundle \({\varvec{M}}\ltimes _\rho V_\rho \) associated to \(S{\varvec{M}}\) and \(\rho \).

  25. 25.

    Terminology here is parallel to [156] but one could equally make a case for labelling the type by the dual (also known as contragredient) representation \(\rho ^*\), which was our convention in Sect. 4.9.1.

  26. 26.

    An interesting variant shows what happens if negative-normed states are allowed [91].

  27. 27.

    Here, the trivial spin structure \(\sigma _0(A) = R_{\varLambda (A)}e\) is intended, where \(e=(\partial /\partial x^\mu )_{\mu =0,\ldots ,3}\) is the orthonormal frame on Minkowski space associated with standard inertial coordinates \(x^\mu \).

  28. 28.

    DHR work in the Hilbert space representation of the Poincaré invariant vacuum state, and require that global gauge transformations should leave the vacuum vector invariant. This also has an analogue in the present setting [54].

  29. 29.

    Suppose \(({\mathscr {A}},\varPhi )\) and \(({\mathscr {B}},\varPsi )\) both satisfy Definition 4.10.4. Then there are naturals \(\eta :{\mathscr {A}}\mathop {\rightarrow }\limits ^{\cdot }{\mathscr {B}}\) and \(\zeta :{\mathscr {B}}\mathop {\rightarrow }\limits ^{\cdot }{\mathscr {A}}\) such that \(\varPsi =\eta \cdot \varPhi \) and \(\varPhi =\zeta \cdot \varPsi \). Hence also \(\varPhi =(\zeta \circ \eta )\cdot \varPhi \). But by the universal property yet again, the only natural \(\xi :{\mathscr {A}}\mathop {\rightarrow }\limits ^{\cdot }{\mathscr {A}}\) such that \(\varPhi =\xi \cdot \varPhi \) is the identity, \(\xi _{\varvec{M}}=\text {id}_{{\mathscr {A}}({\varvec{M}})}\) for all \({\varvec{M}}\in {{{\mathbf {\mathsf{{Loc}}}}}}\). Hence \(\zeta \circ \eta =\text {id}_{{\mathscr {A}}}\) and by similar reasoning applied to \(({\mathscr {B}},\varPsi )\), we also have \(\eta \circ \zeta = \text {id}_{{\mathscr {B}}}\). Hence \(\eta \) is an equivalence.

  30. 30.

    In theories based on a classical Lagrangian one usually proceeds simply to use the ‘same’ Lagrangian (modulo some subtleties [53]) but this option is not open in a general AQFT context.

  31. 31.

    Recall that if \({\varvec{M}}\) has compact Cauchy surfaces then so does \({\varvec{N}}\).

  32. 32.

    This assumes that \({\mathscr {A}}\) is not isomorphic to \({\mathscr {A}}\otimes {\mathscr {A}}\). A convenient way of ruling out such isomorphisms is to check that \({\mathscr {A}}\) and \({\mathscr {A}}\otimes {\mathscr {A}}\) have nonisomorphic gauge groups.

References

  1. Afshordi, N., Aslanbeigi, S., Sorkin, R.D.: A distinguished vacuum state for a quantum field in a curved spacetime: formalism, features, and cosmology. JHEP 08, 137 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  2. Araki, H.: Mathematical Theory of Quantum Fields. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  3. Ashtekar, A., Magnon, A.: Quantum fields in curved space-times. Proc. Roy. Soc. Lond. A 346, 375–394 (1975)

    Google Scholar 

  4. Bär, C., Ginoux, N., Pfäffle, F.: Wave equations on Lorentzian manifolds and quantization. European Mathematical Society (EMS), Zürich (2007)

    Book  MATH  Google Scholar 

  5. Barata, J., Jäkel, C., Mund, J.: The \({\fancyscript {P}}(\varphi )_2\) model on de Sitter space (2013). arXiv:1311.2905 [math-ph]

  6. Baumgärtel, H., Wollenberg, M.: Causal nets of operator algebras. Akademie-Verlag, Berlin (1992)

    MATH  Google Scholar 

  7. Becker, C., Schenkel, A., Szabo, R.J.: Differential cohomology and locally covariant quantum field theory (2014)

    Google Scholar 

  8. Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry, Monographs and Textbooks in Pure and Applied Mathematics, vol. 202, 2nd edn. Marcel Dekker Inc., New York (1996)

    Google Scholar 

  9. Benini, M.: Relative cauchy evolution for spin 1 fields (2011)

    Google Scholar 

  10. Benini, M., Dappiaggi, C., Schenkel, A.: Quantized Abelian principal connections on Lorentzian manifolds (2013). arXiv:1303.2515

  11. Bernal, A.N., Sánchez, M.: Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Commun. Math. Phys. 257, 43–50 (2005). Gr-qc/0401112

    Google Scholar 

  12. Bernal, A.N., Sánchez, M.: Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Lett. Math. Phys. 77, 183–197 (2006). Gr-qc/0512095

    Google Scholar 

  13. Blackadar, B.: Operator Algebras, Encyclopaedia of Mathematical Sciences, vol. 122: Theory of \(C{^{*}}\)-algebras and von Neumann Algebras. Operator Algebras and Non-commutative Geometry, III. Springer, Berlin (2006)

    Google Scholar 

  14. Bogoliubov, N., Logunov, A., Oksak, A., Todorov, I.: General priciples of quantum field theory. Kluwer Academic Publishers, Dordrecht (1990)

    Book  Google Scholar 

  15. Borchers, H.J.: On the structure of the algebra of field operators. Nuovo Cimento 24, 214–236 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bostelmann, H., Cadamuro, D., Fewster, C.J.: Quantum energy inequality for the massive ising model. Phys. Rev. D 88(2), 025,019 (2013)

    Google Scholar 

  17. Bostelmann, H., Fewster, C.J.: Quantum inequalities from operator product expansions. Commun. Math. Phys. 292, 761–795 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 2, 2nd edn. Springer, Berlin (1996)

    Google Scholar 

  19. Brum, M., Fredenhagen, K.: ‘Vacuum-like’ Hadamard states for quantum fields on curved spacetimes. Class. Quantum Gravity 31(2), 025024 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  20. Brunetti, R., Dütsch, M., Fredenhagen, K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13, 1541–1599 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Brunetti, R., Fredenhagen, K.: Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208, 623–661 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Brunetti, R., Fredenhagen, K., Imani, P., Rejzner, K.: The locality axiom in quantum field theory and tensor products of \(C^*\)-algebras. Rev. Math. Phys. 26(6), 1450010, 10 (2014)

    Google Scholar 

  23. Brunetti, R., Fredenhagen, K., Köhler, M.: The microlocal spectrum condition and Wick polynomials of free fields on curved space-times. Commun. Math. Phys. 180, 633–652 (1996)

    Article  ADS  MATH  Google Scholar 

  24. Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle: a new paradigm for local quantum physics. Commun. Math. Phys. 237, 31–68 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Brunetti, R., Ruzzi, G.: Superselection sectors and general covariance. I. Commun. Math. Phys. 270, 69–108 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Brunetti, R., Ruzzi, G.: Quantum charges and spacetime topology: the emergence of new superselection sectors. Commun. Math. Phys. 287, 523–563 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Buchholz, D.: On hot bangs and the arrow of time in relativistic quantum field theory. Commun. Math. Phys. 237, 271–288 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Buchholz, D., Mund, J., Summers, S.A.: Transplantation of local nets and geometric modular action on Robertson-Walker spacetimes. In: Longo, R. (ed.) Mathematical physics in mathematics and physics: Quantum and operator algebraic aspects. Proceedings, Conference, Siena, Italy, 20–24 June 2000. Fields Institute Communications, vol. 30. American Mathematical Society, Providence, RI (2001)

    Google Scholar 

  29. Buchholz, D., Ojima, I., Roos, H.: Thermodynamic properties of nonequilibrium states in quantum field theory. Ann. Phys. 297, 219–242 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Buchholz, D., Størmer, E.: Superposition, transition probability and primitive observables in infinite quantum systems. arXiv:1411.2100

  31. Buchholz, D., Wichmann, E.H.: Causal independence and the energy-level density of states in local quantum field theory. Comm. Math. Phys. 106, 321–344 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Budic, R., Isenberg, J., Lindblom, L., Yasskin, P.B.: On the determination of Cauchy surfaces from intrinsic properties. Commun. Math. Phys. 61, 87–95 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Chilian, B., Fredenhagen, K.: The time slice axiom in perturbative quantum field theory on globally hyperbolic spacetimes. Comm. Math. Phys. 287(2), 513–522 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. D’Antoni, C., Hollands, S.: Nuclearity, local quasiequivalence and split property for Dirac quantum fields in curved spacetime. Comm. Math. Phys. 261(1), 133–159 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Dappiaggi, C.: Remarks on the Reeh-Schlieder property for higher spin free fields on curved spacetimes. Rev. Math. Phys. 23(10), 1035–1062 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Dappiaggi, C., Fredenhagen, K., Pinamonti, N.: Stable cosmological models driven by a free quantum scalar field. Phys. Rev. D 77, 104015 (2008)

    Article  ADS  Google Scholar 

  37. Dappiaggi, C., Lang, B.: Quantization of Maxwell’s equations on curved backgrounds and general local covariance. Lett. Math. Phys. 101(3), 265–287 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Dappiaggi, C., Moretti, V., Pinamonti, N.: Rigorous steps towards holography in asymptotically flat spacetimes. Rev. Math. Phys. 18, 349–416 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Dawson, S.P., Fewster, C.J.: An explicit quantum weak energy inequality for Dirac fields in curved spacetimes. Class. Quant. Grav. 23, 6659–6681 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Degner, A., Verch, R.: Cosmological particle creation in states of low energy. J. Math. Phys. 51, 022302 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  41. Dimock, J.: Algebras of local observables on a manifold. Commun. Math. Phys. 77, 219–228 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Doplicher, S., Haag, R., Roberts, J.E.: Fields, observables and gauge transformations. I. Comm. Math. Phys. 13, 1–23 (1969)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Doplicher, S., Longo, R.: Standard and split inclusions of von Neumann algebras. Invent. Math. 75, 493–536 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Duistermaat, J., Hörmander, L.: Fourier integral operators. I. Acta Mathematica 128, 183 (1972)

    Article  MATH  Google Scholar 

  45. Epstein, H., Glaser, V., Jaffe, A.: Nonpositivity of the energy density in quantized field theories. Il Nuovo Cim. 36, 1016–1022 (1965)

    Article  MathSciNet  Google Scholar 

  46. Ferguson, M.: Dynamical locality of the nonminimally coupled scalar field and enlarged algebra of Wick polynomials. Ann. Henri Poincaré 14(4), 853–892 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Ferguson, M.T.: Aspects of dynamical locality and locally covariant canonical quantization. Ph.D. thesis, University of York (2013). http://etheses.whiterose.ac.uk/4529/

  48. Fewster, C.J.: The split property for locally covariant quantum field theories in curved spacetime. To appear, Lett. Math. Phys. arXiv:1501.02682

  49. Fewster, C.J.: A general worldline quantum inequality. Class. Quant. Grav. 17, 1897–1911 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Fewster, C.J.: Energy inequalities in quantum field theory. In: Zambrini, J.C. (ed.) XIVth International Congress on Mathematical Physics. World Scientific, Singapore (2005). An expanded and updated version is available as math-ph/0501073

    Google Scholar 

  51. Fewster, C.J.: Quantum energy inequalities and stability conditions in quantum field theory. In: Boutet de Monvel, A., Buchholz, D., Iagolnitzer, D., Moschella, U. (eds.) Rigorous Quantum Field Theory: A Festschrift for Jacques Bros, Progress in Mathematics, vol. 251. Birkhäuser, Boston (2006)

    Google Scholar 

  52. Fewster, C.J.: Quantum energy inequalities and local covariance. II. Categorical formulation. Gen. Relativ. Gravit. 39, 1855–1890 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. Fewster, C.J.: On the notion of ‘the same physics in all spacetimes’. In: Finster, F., Müller, O., Nardmann, M., Tolksdorf, J., Zeidler, E. (eds.) Quantum Field Theory and Gravity. Conceptual and Mathematical Advances in the Search for a Unified Framework, pp. 207–227. Birkhäuser (2012). arXiv:1105.6202

  54. Fewster, C.J.: Endomorphisms and automorphisms of locally covariant quantum field theories. Rev. Math. Phys. 25(5), 1350008, 47 (2013)

    Google Scholar 

  55. Fewster, C.J.: Locally covariant quantum field theory and the problem of formulating the same physics in all spacetimes. Phil. Trans. A. Roy. Soc. 373, 20140238 (2015). arXiv:1502.04642

  56. Fewster, C.J.: On the spin-statistics connection in curved spacetimes (2015). arXiv:1503.05797

  57. Fewster, C.J., Eveson, S.P.: Bounds on negative energy densities in flat spacetime. Phys. Rev. D 58, 084,010 (1998)

    Google Scholar 

  58. Fewster, C.J., Hollands, S.: Quantum energy inequalities in two-dimensional conformal field theory. Rev. Math. Phys. 17, 577 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  59. Fewster, C.J., Lang, B.: Dynamical locality of the free Maxwell field. In Press Ann. H. Poincaré (2014). arXiv:1403.7083

  60. Fewster, C.J., Lang, B.: Pure quasifree states of the Dirac field from the fermionic projector (2014). arXiv:1408.1645

  61. Fewster, C.J., Osterbrink, L.W.: Quantum energy inequalities for the non-minimally coupled scalar field. J. Phys. A 41, 025402 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  62. Fewster, C.J., Pfenning, M.J.: A quantum weak energy inequality for spin-one fields in curved spacetime. J. Math. Phys. 44, 4480–4513 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  63. Fewster, C.J., Pfenning, M.J.: Quantum energy inequalities and local covariance. I: Globally hyperbolic spacetimes. J. Math. Phys. 47, 082303 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  64. Fewster, C.J., Schenkel, A.: Locally covariant quantum field theory with external sources. Published online with Ann. H. Poincaré (2014). arXiv:1402.2436

  65. Fewster, C.J., Smith, C.J.: Absolute quantum energy inequalities in curved spacetime. Ann. Henri Poincaré 9, 425–455 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. Fewster, C.J., Teo, E.: Bounds on negative energy densities in static space-times. Phys. Rev. D 59, 104,016 (1999)

    Google Scholar 

  67. Fewster, C.J., Verch, R.: A quantum weak energy inequality for Dirac fields in curved space-time. Commun. Math. Phys. 225, 331–359 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  68. Fewster, C.J., Verch, R.: Stability of quantum systems at three scales: passivity, quantum weak energy inequalities and the microlocal spectrum condition. Commun. Math. Phys. 240, 329–375 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. Fewster, C.J., Verch, R.: Dynamical locality and covariance: what makes a physical theory the same in all spacetimes? Ann. H. Poincaré 13, 1613–1674 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  70. Fewster, C.J., Verch, R.: Dynamical locality of the free scalar field. Ann. H. Poincaré 13, 1675–1709 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  71. Fewster, C.J., Verch, R.: On a recent construction of ‘vacuum-like’ quantum field states in curved spacetime. Class. Quant. Grav. 29, 205017 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  72. Fewster, C.J., Verch, R.: The necessity of the Hadamard condition. Class. Quant. Grav. 30, 235027 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  73. Finster, F.: Definition of the Dirac sea in the presence of external fields. Adv. Theor. Math. Phys. 2, 963–985 (1998)

    MathSciNet  MATH  Google Scholar 

  74. Finster, F., Reintjes, M.: A non-perturbative construction of the Fermionic projector on globally hyperbolic manifolds I—Space-times of finite lifetime (2013). arXiv:1301.5420

  75. Flanagan, É.É.: Quantum inequalities in two-dimensional Minkowski spacetime. Phys. Rev. D 3(56), 4922–4926 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  76. Ford, L.H.: Quantum coherence effects and the second law of thermodynamics. Proc. Roy. Soc. Lond. A 364, 227–236 (1978)

    Article  ADS  Google Scholar 

  77. Ford, L.H.: Constraints on negative-energy fluxes. Phys. Rev. D 43, 3972–3978 (1991)

    Article  ADS  Google Scholar 

  78. Ford, L.H., Roman, T.A.: Restrictions on negative energy density in flat spacetime. Phys. Rev. D 55, 2082–2089 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  79. Fredenhagen, K.: On the modular structure of local algebras of observables. Comm. Math. Phys. 97(1–2), 79–89 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  80. Fredenhagen, K., Haag, R.: On the derivation of Hawking radiation associated with the formation of a black hole. Comm. Math. Phys. 127(2), 273–284 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  81. Fredenhagen, K., Rejzner, K.: Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory. Commun. Math. Phys. 317, 697–725 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  82. Fulling, S.A., Narcowich, F.J., Wald, R.M.: Singularity structure of the two-point function in quantum field theory in curved spacetime. II. Ann. Phys. 136, 243–272 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  83. Geroch, R.: Domain of dependence. J. Math. Phys. 11, 437–449 (1970)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  84. Guido, D., Longo, R.: A converse Hawking-Unruh effect and dS(2)/CFT correspondence. Ann. Henri Poincaré 4, 1169–1218 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  85. Guido, D., Longo, R., Roberts, J., Verch, R.: Charged sectors, spin and statistics in quantum field theory on curved space-times. Rev. Math. Phys. 13, 125–198 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  86. Haag, R.: Local Quantum Physics: Fields, Particles. Algebras. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  87. Haag, R., Narnhofer, H., Stein, U.: On quantum field theory in gravitational background. Commun. Math. Phys. 94, 219 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  88. Haag, R., Swieca, J.A.: When does a quantum field theory describe particles? Comm. Math. Phys. 1, 308–320 (1965)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  89. Halvorson, H., Clifton, R.: Generic Bell correlation between arbitrary local algebras in quantum field theory. J. Math. Phys. 41, 1711–1717 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  90. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, London (1973)

    Book  MATH  Google Scholar 

  91. Higuchi, A., Parker, L., Wang, Y.: Consistency of Faddeev-Popov ghost statistics with gravitationally induced pair creation. Phys. Rev. D 42, 4078–4081 (1990)

    Article  ADS  Google Scholar 

  92. Hollands, S.: A General PCT theorem for the operator product expansion in curved space-time. Commun. Math. Phys. 244, 209–244 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  93. Hollands, S.: The Operator product expansion for perturbative quantum field theory in curved spacetime. Commun. Math. Phys. 273, 1–36 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  94. Hollands, S.: Renormalized quantum Yang-Mills fields in curved spacetime. Rev. Math. Phys. 20, 1033–1172 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  95. Hollands, S., Wald, R.M.: Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223, 289–326 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  96. Hollands, S., Wald, R.M.: Existence of local covariant time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 231, 309–345 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  97. Hollands, S., Wald, R.M.: Axiomatic quantum field theory in curved spacetime. Commun. Math. Phys. 293, 85–125 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  98. Hörmander, L.: The Analysis of Partial Differential Operators. I. Springer, Berlin (1983)

    Google Scholar 

  99. Isham, C.J.: Spinor fields in four-dimensional space-time. Proc. Roy. Soc. Lond. Ser. A 364(1719), 591–599 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  100. Jaffe, A., Jäkel, C.D., Martinez, R.E.: Complex classical fields: a framework for reflection positivity. Commun. Math. Phys. 329, 1–28 (2014)

    Article  ADS  MATH  Google Scholar 

  101. Jaffe, A., Ritter, G.: Quantum field theory on curved backgrounds. I. The Euclidean functional integral. Commun. Math. Phys. 270, 545–572 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  102. Junker, W.: Hadamard states, adiabatic vacua and the construction of physical states for scalar quantum fields on curved space-time. Rev. Math. Phys. 8, 1091–1159 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  103. Junker, W., Schrohe, E.: Adiabatic vacuum states on general space-time manifolds: definition, construction, and physical properties. Ann. Poincaré Phys. Theor. 3, 1113–1182 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  104. Kay, B.S.: Casimir effect in quantum field theory. Phys. Rev. D 20, 3052–3062 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  105. Kay, B.S.: The principle of locality and quantum field theory on (non-globally hyperbolic) curved spacetimes. Rev. Math. Phys. (Special Issue), 167–195 (1992)

    Google Scholar 

  106. Kay, B.S., Radzikowski, M.J., Wald, R.M.: Quantum field theory on space-times with a compactly generated Cauchy horizon. Commun. Math. Phys. 183, 533–556 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  107. Kay, B.S., Wald, R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on space-times with a bifurcate Killing horizon. Phys. Rep. 207, 49–136 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  108. Landau, L.J.: A note on extended locality. Commun. Math. Phys. 13, 246–253 (1969)

    Article  ADS  MATH  Google Scholar 

  109. Lechner, G., Longo, R.: Localization in nets of standard spaces. ArXiv e-prints (2014)

    Google Scholar 

  110. Longo, R., Rehren, K.H.: Local fields in boundary conformal QFT. Rev. Math. Phys. 16, 909 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  111. Longo, R., Rehren, K.H.: Boundary quantum field theory on the interior of the lorentz hyperboloid. Commun. Math. Phys. 311, 769–785 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  112. Lueders, C., Roberts, J.: Local quasiequivalence and adiabatic vacuum states. Commun. Math. Phys. 134, 29–63 (1990)

    Article  ADS  MATH  Google Scholar 

  113. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, New York (1998)

    Google Scholar 

  114. Marecki, P.: Bounds on the energy densities of ground states on static spacetimes of compact objects. Phys. Rev. D 73(12), 124009 (2006)

    Article  ADS  Google Scholar 

  115. Moretti, V.: Quantum ground states holographically induced by asymptotic flatness: invariance under spacetime symmetries, energy positivity and Hadamard property. Commun. Math. Phys. 279, 31–75 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  116. Moretti, V., Pinamonti, N.: State independence for tunneling processes through black hole horizons and Hawking radiation. Commun. Math. Phys. 309, 295–311 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  117. Olbermann, H.: States of low energy on Robertson-Walker spacetimes. Class. Quant. Grav. 24, 5011–5030 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  118. Olum, K.D., Graham, N.: Static negative energies near a domain wall. Phys. Lett. B 554, 175–179 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  119. O’Neill, B.: Semi-Riemannian Geometry. Academic Press, New York (1983)

    MATH  Google Scholar 

  120. Parker, L.: Quantized fields and particle creation in expanding universes. 1. Phys. Rev. 183, 1057–1068 (1969)

    Article  ADS  MATH  Google Scholar 

  121. Parker, L.: Quantized fields and particle creation in expanding universes. 2. Phys. Rev. D3, 346–356 (1971)

    Google Scholar 

  122. Parker, L., Wang, Y.: Statistics from dynamics in curved spacetime. Phys. Rev. D 39, 3596–3605 (1989)

    Article  ADS  Google Scholar 

  123. Penrose, R.: Techniques of differential topology in relativity. Society for Industrial and Applied Mathematics, Philadelphia, Pa. (1972). Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 7

    Google Scholar 

  124. Pfenning, M.J., Ford, L.H.: Scalar field quantum inequalities in static spacetimes. Phys. Rev. D 57, 3489–3502 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  125. Pinamonti, N.: On the initial conditions and solutions of the semiclassical Einstein equations in a cosmological scenario. Commun. Math. Phys. 305, 563–604 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  126. Pusz, W., Woronowicz, S.: Passive states and KMS states for general quantum systems. Commun. Math. Phys. 58, 273–290 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  127. Radzikowski, M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529–553 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  128. Rehren, K.H.: Algebraic holography. Ann. Henri Poincaré 1, 607–623 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  129. Roberts, J.E.: A survey of local cohomology. In: Mathematical problems in theoretical physics (Proceedings of Internatinal Conference, University of Rome, Rome, 1977), Lecture Notes in Physics, vol. 80, pp. 81–93. Springer, Berlin (1978)

    Google Scholar 

  130. Roos, H.: Independence of local algebras in quantum field theory. Commun. Math. Phys. 16, 238–246 (1970)

    Article  ADS  MATH  Google Scholar 

  131. Ruzzi, G.: Homotopy of posets, net-cohomology and superselection sectors in globally hyperbolic space-times. Rev. Math. Phys. 17, 1021–1070 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  132. Ruzzi, G.: Punctured Haag duality in locally covariant quantum field theories. Comm. Math. Phys. 256(3), 621–634 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  133. Sahlmann, H., Verch, R.: Passivity and microlocal spectrum condition. Commun. Math. Phys. 214, 705–731 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  134. Sahlmann, H., Verch, R.: Microlocal spectrum condition and Hadamard form for vector valued quantum fields in curved space-time. Rev. Math. Phys. 13, 1203–1246 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  135. Sanders, K.: On the Reeh-Schlieder property in curved spacetime. Commun. Math. Phys. 288, 271–285 (2009)

    Article  ADS  MATH  Google Scholar 

  136. Sanders, K.: The locally covariant Dirac field. Rev. Math. Phys. 22, 381–430 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  137. Sanders, K., Dappiaggi, C., Hack, T.P.: Electromagnetism, local covariance, the Aharonov-Bohm effect and Gauss’ law (2012). arXiv:1211.6420

  138. Schlemmer, J., Verch, R.: Local thermal equilibrium states and quantum energy inequalities. Ann. Henri Poincaré 9, 945–978 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  139. Schlieder, S.: Einige Bemerkungen über Projektionsoperatoren (Konsequenzen eines Theorems von Borchers). Comm. Math. Phys. 13, 216–225 (1969)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  140. Schoch, A.: On the simplicity of Haag fields. Int. J. Theor. Phys. 1, 107–113 (1968)

    Article  MathSciNet  Google Scholar 

  141. Solveen, C.: Local thermal equilibrium in quantum field theory on flat and curved spacetimes. Class. Quant. Grav. 27, 235002 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  142. Solveen, C.: Local thermal Equilibrium and KMS states in curved spacetime. Class. Quant. Grav. 29, 245015 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  143. Streater, R.F., Wightman, A.S.: PCT, spin and statistics, and all that. Princeton Landmarks in Physics. Princeton University Press, Princeton (2000). Corrected third printing of the 1978 edition

    Google Scholar 

  144. Strohmaier, A.: The Reeh-Schlieder property for quantum fields on stationary spacetimes. Comm. Math. Phys. 215(1), 105–118 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  145. Strohmaier, A., Verch, R., Wollenberg, M.: Microlocal analysis of quantum fields on curved space-times: analytic wave front sets and Reeh-Schlieder theorems. J. Math. Phys. 43(11), 5514–5530 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  146. Summers, S., Werner, R.: Maximal violation of Bell’s inequalities for algebras of observables in tangent spacetime regions. Ann. Inst. Henri Poincaré 49, 215–243 (1988)

    MathSciNet  MATH  Google Scholar 

  147. Summers, S.J.: On the independence of local algebras in quantum field theory. Rev. Math. Phys. 2(2), 201–247 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  148. Torre, C.G., Varadarajan, M.: Functional evolution of free quantum fields. Class. Quant. Grav. 16, 2651–2668 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  149. Uhlmann, A.: Über die Definition der Quantenfelder nach Wightman und Haag. Wiss. Z. Karl-Marx-Univ. Leipzig Math.-Nat. Reihe 11, 213–217 (1962)

    Google Scholar 

  150. Verch, R.: Antilocality and a Reeh-Schlieder theorem on manifolds. Lett. Math. Phys. 28(2), 143–154 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  151. Verch, R.: Nuclearity, split property, and duality for the Klein-Gordon field in curved spacetime. Lett. Math. Phys. 29(4), 297–310 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  152. Verch, R.: Local definiteness, primarity and quasiequivalence of quasifree Hadamard quantum states in curved spacetime. Comm. Math. Phys. 160(3), 507–536 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  153. Verch, R.: Scaling algebras, the renormalization group and the principle of local stability in algebraic quantum field theory. In: Proceedings of the Conference on Operator Algebras and Quantum Field Theory, Rome, Italy, 1–6 July 1996, International Press (1996)

    Google Scholar 

  154. Verch, R.: Continuity of symplectically adjoint maps and the algebraic structure of Hadamard vacuum representations for quantum fields on curved spacetime. Rev. Math. Phys. 9, 635–674 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  155. Verch, R.: Wavefront sets in algebraic quantum field theory. Commun. Math. Phys. 205, 337–367 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  156. Verch, R.: A spin-statistics theorem for quantum fields on curved spacetime manifolds in a generally covariant framework. Commun. Math. Phys. 223, 261–288 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  157. Verch, R.: Local covariance, renormalization ambiguity, and local thermal equilibrium in cosmology. In: Finster, F., Müller, O., Nardmann, M., Tolksdorf, J., Zeidler, E. (eds.) Quantum Field Theory and Gravity. Conceptual and Mathematical Advances in the Search for a Unified Framework. Birkhäuser (2012). arXiv:1105.6249

  158. Verch, R., Werner, R.F.: Distillability and positivity of partial transposes in general quantum field systems. Rev. Math. Phys. 17, 545–576 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  159. Wald, R.M.: The back reaction effect in particle creation in curved space-time. Commun. Math. Phys. 54, 1–19 (1977)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  160. Wald, R.M.: Existence of the \(S\)-matrix in quantum field theory in curved space-time. Ann. Phys. 118, 490–510 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  161. Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  162. Wald, R.M.: Correlations beyond the horizon. Gen. Rel. Grav. 24, 1111–1116 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  163. Wald, R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. University of Chicago Press, Chicago (1994)

    MATH  Google Scholar 

  164. Wollenberg, M.: Scaling limits and type of local algebras over curved space-time. In: Arveson, W.B. et al. (eds.) Operator Algebras and Topology. Proceedings, Craiova, 1989. Pitman Research Notes in Mathematics Series, vol. 270, pp. 179–196. Longman Science and Technology, Harlow (1992)

    Google Scholar 

  165. Yurtsever, U.: Algebraic approach to quantum field theory on nonglobally hyperbolic space-times. Class. Quant. Grav. 11, 999–1012 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgments

We are grateful to Francis Wingham for comments on the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Fewster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fewster, C.J., Verch, R. (2015). Algebraic Quantum Field Theory in Curved Spacetimes. In: Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds) Advances in Algebraic Quantum Field Theory. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-21353-8_4

Download citation

Publish with us

Policies and ethics