Skip to main content

The Evolution of Experimental Carbon Phase Diagram

  • Chapter
  • First Online:
Carbon at High Temperatures

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 134))

Abstract

Several diagram of Bundy are considered up to 1994 year, starting with combined diagram for C, Si and Ge (1964 year). The contribution to phase diagram by Motohiro Togaya for bulk carbon and modified diagram for nanocarbon of other investigators are also shown. A significant part of this chapter deals with the computational work on the melting of graphite and phase diagram of carbon, including high pressure level. Modeling of carbon phase diagram and the agreement with the experiments are discussed, including the new publications of 2014–2015 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.A. Sheindlin, The phase diagram of carbon at high temperatures. High Temp. 19(3), 467–488 (1981)

    Google Scholar 

  2. L.F. Vereshchagin, N.S. Fateeva, Melting curves of graphite, tungsten and platinum up to 60 kbar. JETP 28(4), 597–819 (1969)

    Google Scholar 

  3. N.S. Fateeva, L.F. Vereshchagin, On the graphite melting curve to 90 kbar. JETP Lett. 13, 110–111 (1971).

    Google Scholar 

  4. F.P. Bundy, Melting of graphite at very high pressure. J. Chem. Phys 38, 618–630 (1963)

    Article  Google Scholar 

  5. B.J. Alder, R.H. Christian, Phys. Rev. Letters 7, 367 (1961)

    Article  Google Scholar 

  6. P.S. DeCarli, J.C. Jamieson, Science 133, 1821 (1961)

    Article  Google Scholar 

  7. F.P. Bundy, Direct conversion of graphite to diamond in static pressure apparatus. J. Chem. Phys. 38(3), 631–643 (1963)

    Article  Google Scholar 

  8. F.P. Bundy, Phase diagrams of silicon and germanium up to 200 kbar, 1000 C. J. Chem. Phys. 41(12), 3809–3813 (1964)

    Article  Google Scholar 

  9. F.P. Bundy, Pressure-temperature phase diagram of elemental carbon. Phys. A 156(1), 169–178 (1989)

    Article  Google Scholar 

  10. J.W. Shaner, Equation of state and electrical conductivity of carbon, pulse heated up to 6000 K. Bull. Am. Phys. Soc. 32(607), 133 (1987)

    Google Scholar 

  11. P. Gustafson, An evaluation of the thermodynamic properties and the P, T phase diagram of carbon. Carbon 24(2), 169–176 (1986)

    Article  Google Scholar 

  12. V.N. Korobenko, A.I. Savvatimskiy, Electrical resistivity of liquid carbon. High Temp. 36(5), 700–707 (1998)

    Google Scholar 

  13. V.N. Korobenko, A.I. Savvatimski, R. Cheret, Graphite melting and properties of liquid carbon. Int. J. Thermophys. 20(4), 1247–1256 (1999)

    Article  Google Scholar 

  14. V.N. Korobenko, PhD dissertation for the degree of candidate of physical and mathematical sciences, Experimental study of the properties of liquid metals and carbon at high temperatures, (Moscow : Institute for High Temperatures RAS, 2001) (in Russian)

    Google Scholar 

  15. A.V. Baitin, A.A. Lebedev, S.V. Romanenko, V.N. Senchenko, M.A. Sheindlin, The melting point and optical properties of solid and liquid carbon at pressures up to 2 kbar. High Temp.-High Press 21, 157–170 (1990)

    Google Scholar 

  16. F.P. Bundy, W.A. Basset, M.S. Weathers, R.J. Hemley, H.K. Mao, A.F. Goncharov, Review article The pressure-temperature phase and transformation diagram for carbon; updated through. Carbon 34(2), 141–153 (1996)

    Article  Google Scholar 

  17. M. Togaya, Pressure dependences of the melting temperature of graphite and the electrical resistivity of liquid carbon. Phys. Rev. Lett. 79(13), 2474–2477 (1997)

    Article  Google Scholar 

  18. M.A. Sheindlin, V.N. Senchenko, Experimental study of thermodynamic properties of graphite in the vicinity of the melting point. Doklady 298(6), 1383–1386 (1988). (in Russian) 

    Google Scholar 

  19. A.I. Savvatimskiy, V.E. Fortov, R. Cheret, Thermophysical properties of liquid metals and graphite, and diamond production under fast heating. High Temp.-High Press 30, 1–18 (1998)

    Article  Google Scholar 

  20. S.V. Lebedev, A.I. Savvatimskiy, The electrical resistivity of graphite in a wide range of condensed state. High Temp. 24(5), 671–678 (1986)

    Google Scholar 

  21. M. Togaya, S. Sugiyama, E. Mizuhara, Melting line of graphite. AIP Conf. Proc. 309, 255–258 (1994)

    Google Scholar 

  22. A. Cezairliyan, P. Miiller, Measurement of the radiance temperature (at 655 nm) of melting graphite near its triple point by a pulse-heating technique. Int. J. Thermophys. 11(4), 643–651 (1990)

    Article  Google Scholar 

  23. M. Togaya, Behaviors of liquid carbon at high pressure, in New Kinds of Phase Transitions: Transformations in Disordered Substances, ed. by V.V. Brazhkin, et al. (Kluwer Academic Publishers, Printed in the Netherlands, 2002), pp. 255–266

    Chapter  Google Scholar 

  24. L.F. Vereshchagin, E.N. Yakovlev, L.M. Buchnev, B.K. Dymov, The question about the conditions of equilibrium of diamond with different carbon materials. High Temperatures 15(2), 316–321 (1977). in Russian

    Google Scholar 

  25. H.R. Leider, O.H. Krikorian, D.A. Young, Thermodynamic properties of carbon up to the critical point. Carbon 11, 555–563 (1973)

    Article  Google Scholar 

  26. V.I. Kostikov, N.N. Shipkov, Y.A. Kalashnikov, et al., Graphitization and diamond formation, M. Metallurgy (1991)

    Google Scholar 

  27. A.F. Goncharov, I.N. Makarenko, S.M. Stishov, Graphite at pressures up to 55 GPa: optical properties and combination scattering of light, amorphous carbon? JEPT 96(2), 380 (1989)

    Google Scholar 

  28. F.P. Bundy, Science 137, 1057 (1962)

    Article  Google Scholar 

  29. O.I. Leipunsky, About artificial diamonds. Chem. Uspekhi 8(10), 1519 (1939)

    Google Scholar 

  30. L.F. Vereshchagin, Solid state at a high pressure. Nauka 1981, 286 p. (in Russian)

    Google Scholar 

  31. M. Togaya, Electrical property changes of liquid carbon under high pressures. J. Phys.: Conf. Ser. 215 012 081 (2010)

    Google Scholar 

  32. M. Togaya, Electrical resistivity of liquid carbon at high pressure, Science and Technology of High Pressure. In Proceedings of AIRAPT-17, ed by M.H. Manghnani, W.J. Nellis, M.F. Nicol (Universities Press, Hyderabad, India, 2000), pp. 871–874

    Google Scholar 

  33. V.N. Korobenko, A.D. Rakhel, A.I. Savvatimskiy, V.E. Fortov, Measurement of the electrical resistivity of hot aluminum passing from the liquid to gaseous state at supercritical pressure. Physical Review B 71, 014208 (2005)

    Article  Google Scholar 

  34. V.N. Korobenko, A.D. Rakhel, Observation of a first-order metal-to-nonmetal phase transition in fluid iron. Physical Review B 85, 014208 (2012)

    Article  Google Scholar 

  35. A.L. Vereshchagin, Phase diagram of ultrafine carbon. Combust. Explosion Shock Waves 38(3), 358–359 (2002). in Russian

    Article  Google Scholar 

  36. C.C. Yang, S. Li, Size-dependent temperature–pressure phase diagram of carbon. J. Phys. Chem. 112, 1423–1426 (2008)

    Google Scholar 

  37. F.P. Bundy, R.H. Wentorf, Direct transformastion of hexagonal boron nitride to denser forms. J. Chem. Phys. 38, 1733815 (6 pages) (1963)

    Google Scholar 

  38. V.N. Korobenko, A.I. Savvatimskiy, Blackbody design for high temperature (1800 to 5500 K) of metals and carbon in liquid states under fast heating, Temperature: its measurement and control in science and industry. AIP Conf. Proc. Ed. Dean C. Ripple, 7, Part 2, pp. 783–788 (2003)

    Google Scholar 

  39. A.I. Savvatimskiy, Melting point of graphite and liquid carbon. Phys. Usp. 46, 1295–1303 (2003)

    Google Scholar 

  40. A.I. Savvatimskiy, Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963–2003). Carbon 43, 1115–1142 (2005)

    Article  Google Scholar 

  41. Basharin A. Yu, M.V. Brykin, M. Marin, I.S. Pakhomov, S.F. Sitnikov, Ways to improve the measurement accuracy in the experimental determination of the melting temperature of graphite. High Temp. 42(1), 60–67 (2004)

    Google Scholar 

  42. M. Van Thiel, F.H. Ree, High-pressure liquid-liquid phase change in carbon. Phys. Rev. B (condensed matter) 48(6), 3591 (1993)

    Article  Google Scholar 

  43. V.A. Kirillin, V.V. Sychev, A.E. Sheindlin, Technical Thermodynamics (Energoatomizdat, Moscow, 1983). in Russian

    Google Scholar 

  44. N.S. Fateeva, L.F. Vereshchagin, V.S. Kolotygin, Optical method for measuring the melting temperature of graphite up to 3 kbar. Doklady USSR 152(1), 88 (1963). in Russian

    Google Scholar 

  45. F.P. Bundy, The P, T phase and reaction diagram for elemental carbon. J. Geophys. Res. 85(B12), 6930–6936 (1980)

    Article  Google Scholar 

  46. L. Colombo, A. Fasolino (eds.), Computer-Based Modeling of Novel Carbon Systems and Their Properties, Carbon Materials: Chemistry and Physics 3, Springer Science + Business Media B.V. (2010)

    Google Scholar 

  47. E.I. Asinovsky, A.V. Kirillin, A.V. Kostanovskii, On the carbon phase diagram in the vicinity of the triple point of the solid-liquid-vapor. High Temp. 35, 716 (1997). in Russian

    Google Scholar 

  48. E.I. Asinovsky, A.V. Kirillin, A.V. Kostanovskii, V.E. Fortov, On the parameters of carbon melting. High Temperatures 36(5), 716–721 (1998)

    Google Scholar 

  49. J.N. Glosli, F.H. Ree, Phys. Rev. Lett. 82, 4659 (1999)

    Article  Google Scholar 

  50. A. Ferraz, N.H. March, Phys. Chem. Liq. 8, 289 (1979)

    Google Scholar 

  51. A. Umantsev, Z. Akkerman, Continuum theory of carbon phases. Carbon 48(1), 8–24 (2010)

    Article  Google Scholar 

  52. F. Colonna, A. Fasolino, E.J. Meijer, High-pressure high-temperature equation of state of graphite from Monte Carlo simulations. Carbon 49(2), 364–368 (2011)

    Article  Google Scholar 

  53. Igor I. Shabalin “Ultra-High Temperature Materials I: Carbon (Graphene/Graphite), and Refractory metals” (Springer, 2014)

    Google Scholar 

  54. N.D. Orekhov, V.V. Stegailov, Molecular dynamics simulation of graphite melting. High Temp. 52(2), 198–204 (2014)

    Article  Google Scholar 

  55. N.D. Orekhov, V.V. Stegailov, Graphite melting: atomistic kinetics bridges theory and experiment. Carbon 8(7), 358–364 (2015)

    Article  Google Scholar 

  56. A.V. Kirillin, S.P. Malyshenko, M.A. Sheindlin, V.N. Evseev, Study of phase transformations of condensed phase—carbon gas in the vicinity of the triple point of graphite-liquid-vapor under pressure up to 400 bar. Doklady 257(6), 1356–1359 (1981). in Russian

    Google Scholar 

  57. A.V. Kirillin, M.D. Kovalenko, S.V. Romanenko, L.M. Heifetz, M.A. Sheindlin, Apparatus and methods for examining the properties of refractory substances at high temperatures and pressures by stationary laser heating. High Temp. 24(2), 286–290 (1986)

    Google Scholar 

  58. M. Musella, C. Ronchi, M. Brykin, M. Sheindlin, The molten state of graphite: an experimental study. J. Appl. Phys. 84(5), 2530–2537 (1998)

    Article  Google Scholar 

  59. A.I. Savvatimskiy, V.N. Korobenko, High-temperature properties of metals for nuclear industry (zirconium, hafnium and iron during melting and in the liquid state). MEI Publishing House, 216 p., (2012). ISBN 978-5-383-00800-3 (in Russian)

    Google Scholar 

  60. Arseniy Kondratyev, Sergey Muboyajan, Sergey Onufriev, Alexander Savvatimskiy, The application of the fast pulse heating method for investigation of carbon-rich side of Zr–C phase diagram under high temperatures. J. Alloy. Compd. 631, 52–59 (2015)

    Article  Google Scholar 

  61. A.M. Kondratyev, S.V. Onufriev, A.I. Savvatimskiy Melting of HAPG graphite Joint Institute for High Temperatures, Moscow, Russia, (unpublished), see the Chapter 10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Savvatimskiy .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Savvatimskiy, A. (2015). The Evolution of Experimental Carbon Phase Diagram. In: Carbon at High Temperatures. Springer Series in Materials Science, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-319-21350-7_8

Download citation

Publish with us

Policies and ethics