Skip to main content

Experimental Setup in Fast Heating of Carbon

  • Chapter
  • First Online:
Carbon at High Temperatures

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 134))

  • 744 Accesses

Abstract

Two installations are shown: with a small current pulse (upper limit 15 kA) for training students and the largest one with a high current pulse (upper limit 400 kA). The features of these two systems discussed in all the details that are the most important to the experimenters. It was given a choice of a blackbody design and fast pyrometer for recording melting and liquid state of carbon under fast heating in JIHT. A detailed description of the arrangements in pulse electrical heating is shown. Pulse heating results on measuring carbon temperature (up to 12,000 K) are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.I. Savvatimskiy, V.N. Korobenko, High-temperature properties of metals for nuclear industry (zirconium, hafnium and iron during melting and in the liquid state), MEI Publishing House (2012), 216 pp. ISBN 978-5-383-00800-3. in Russian

    Google Scholar 

  2. A. Cavalleri, K. Sokolowski-Tinten, D. Von der Linde et al., Generation of the low density liquid phase of carbon by non-thermal melting of fullerite. Europhys. Lett. 57(2), 281–287 (2002)

    Article  Google Scholar 

  3. V.N. Korobenko, A.I. Savvatimski, R. Cheret, Graphite melting and properties of liquid carbon. Int. J. Thermophys. 20(4), 1247–1256 (1999)

    Article  Google Scholar 

  4. A.I. Savvatimskiy, V.E. Fortov, R. Cheret, Thermophysical properties of liquid metals and graphite, and diamond production under fast heating. High Temp.-High Press 30, 1–18 (1998)

    Article  Google Scholar 

  5. C.E. Mendenhall, On the emissive power of wedge-shaped cavities and their use in temperature measurements (an international review of spectroscopy and astronomical physics). Astrophys. J. 33(2), 91–97 (1911)

    Article  Google Scholar 

  6. J.C. De Vos, Evaluation of the quality of a blackbody, Physica XX, pp. 669–689 (1954)

    Google Scholar 

  7. A. Cezairliyan, A.P. Miiller, Heat capacity and electrical resistivity of POCO AXM-5Q1 graphite in the range 1500–3000 K by a pulse-heating technique. Int. J. Thermophys. 6(3), 285–300 (1985)

    Article  Google Scholar 

  8. A. Cezairliyan, P. Miiller, Measurement of the radiance temperature (at 655 nm) of melting graphite near its triple point by a pulse-heating technique. Int. J. of Thermophys. 11(4), 643–651 (1990)

    Article  Google Scholar 

  9. A. Cezairliyan, F. Righini, Rev. Int. Hautes Temp. et Refract. 12, 124 (1975)

    Google Scholar 

  10. L.N. Latyev, V.A. Petrov, V.Y. Chekhovskoi, E.N. Shestakov, Radiative properties of solid materials, in Handbook, ed. Sheindlin A.E., Moscow: Energiya, (1974), 471 pp. in Russian

    Google Scholar 

  11. V.N. Korobenko, A.I. Savvatimskiy, Liquid zirconium properties up to 4100 K (density, enthalpy, heat capacity, emissivity, and resistivity). Russ. J. Phys. Chem. 77(10), 1564–1569 (2003). (in Russian)

    Google Scholar 

  12. Korobenko V.N., and Savvatimskiy A.I., Blackbody design for high temperature (1800–5500 K) of metals and carbon in liquid states under fast heating, TEMPERATURE: its measurement and control in science and industry, in AIP Conference Proceedings, ed. Dean C. Ripple, vol. 7, Part 2, pp. 783–788 (2003)

    Google Scholar 

  13. V.N. Korobenko, A.I. Savvatimskiy, The density of liquid hafnium from the melting point to the boiling point. High Temp. 45(2), 159–163 (2007)

    Article  Google Scholar 

  14. V.N. Korobenko, M.B. Agranat, S.I. Ashitkov, A.I. Savvatimskiy, zirconium and iron densities in a wide range of liquid states. Intern. J. Thermophys 23(1), 307–318 (2002)

    Article  Google Scholar 

  15. V.N. Korobenko, A.I. Savvatimskiy, Measurement of the zirconium temperature from the melting temperature to 4100 K using blackbody models in a liquid state. High Temp. 39(3), 485–490 (2001)

    Google Scholar 

  16. V.N. Korobenko, Ph.D. dissertation for the degree of candidate of physical and mathematical sciences, Experimental study of the properties of liquid metals and carbon at high temperatures, (Moscow: Institute for High Temperatures RAS, 2001). in Russian

    Google Scholar 

  17. V.N. Korobenko, A.I. Savvatimskiy, Electrical resistivity of liquid carbon. High Temp. 36(5), 700–707 (1998)

    Google Scholar 

  18. V.N. Senchenko, M.A. Sheindlin, Experimental study of the thermodynamic properties of graphite near the melting point. Sov. Phys. Dokl. 33, 142–145 (1988)

    Google Scholar 

  19. N.S. Fateeva, L.F. Vereshchagin, V.S. Kolotygin, Optical method for measuring the melting temperature of graphite up to 3 kbar. Doklady USSR 152(1), 88 (1963). in Russian

    Google Scholar 

  20. L.F. Vereshchagin, N.S. Fateeva, Melting curves of graphite, tungsten and platinum up to 60 kbar. JETP 28(4), 597–600 (1969)

    Google Scholar 

  21. N.S. Fateeva, L.F. Vereshchagin, On the graphite melting curve to 90 kbar. JETP Lett. 13(3), 110–111 (1971)

    Google Scholar 

  22. M.A. Sheindlin, V.N. Senchenko, Experimental study of thermodynamic properties of graphite in the vicinity of the melting point. Doklady 298(6), 1383–1386 (1988). in Russian

    Google Scholar 

  23. L.M. Buchnev, A.I. Smyslov, I.A. Dmitriev, A.F. Kuteinikov, V.I. Kostikov, Experimental study of the enthalpy of kuazi-moncrystal graphite and glassy carbon in the temperature range 300–3800 K. High Temp. 25(6), 816–821 (1987)

    Google Scholar 

  24. M. Togaya, Behaviors of liquid carbon at high pressure, in New Kinds of Phase Transitions: Transformations in Disordered Substances, ed. by V.V. Brazhkin (Kluwer Academic Publishers, Printed in the Netherlands, 2002), pp. 255–266

    Chapter  Google Scholar 

  25. M. Togaya, Electrical resistivity of liquid carbon at high pressure, Science and Technology of High Pressure, in Proceedings of AIRAPT-17, eds. by M.H. Manghnani, W.J. Nellis, M.F. Nicol, (Universities Press, Hyderabad, India, 2000), pp. 871– 874

    Google Scholar 

  26. F.P. Bundy, Melting of graphite at very high pressure. J. Chem. Phys 38, 618–630 (1963)

    Article  Google Scholar 

  27. F.P. Bundy, Direct conversion of graphite to diamond in static pressure apparatus. J. Chem. Phys. 38(3), 631–643 (1963)

    Article  Google Scholar 

  28. M. Togaya, Pressure dependences of the melting temperature of graphite and the electrical resistivity of liquid carbon. Phys. Rev. Lett. 79(13), 2474–2477 (1997)

    Article  Google Scholar 

  29. M. Togaya, S. Sugiyama, E. Mizuhara, Melting line of graphite, in AIP Conference Proceedings, no. 309, pt. 1, pp. 255–258 (1994)

    Google Scholar 

  30. J.B. Neaton, N.W. Ashcroft, Pairing in dense lithium. Nature (Letters to Nature) 400, 141 (1999)

    Article  Google Scholar 

  31. V.E. Fortov, V.N. Korobenko, A.I. Savvatimskiy, Liquid metals and liquid carbon: some similar properties at high temperatures. Eur. Phys. J. B (EPJ WEB of the Conferences), 15, 02001 (2011)

    Google Scholar 

  32. E.G. Maksimov, M.V. Magnitskaya, V.E. Fortov, Not a simple behavior of the simple metals at high pressure. Phys. Uspekhi 48(8), 761–780 (2005)

    Google Scholar 

  33. G.S. Atwal, I.G. Khalil, N.W. Ashcroft, Dynamical local-field factors and effective interactions in the two-dimensional electron liquid. Phys. Rev. B 67, 115107 (2003)

    Article  Google Scholar 

  34. V.V. Mirkovich, Electrical resistance anisotropy of a POCO AXM-5Q1 graphite. Int. J. Thermophys. 8(6), 795–801 (1987)

    Google Scholar 

  35. S.V. Lebedev, A.I. Savvatimskiy, The electrical resistivity of graphite in a wide range of condensed state. High Temp. 24(5), 892–899 (1986)

    Google Scholar 

  36. S.V. Lebedev, A.I. Savvatimskiy, Investigation of metals and graphite under conditions of rapid electric heating, in Thermal Physics Reviews, eds. by A.E. Sheindlin, V.E. Fortov. Section B, vol. 5 part 3, (Yverdon, Switzerland: Harwood Academic Publishers GmbH, 1993), p. 1–79

    Google Scholar 

  37. R.B. Kotelnikov, S.N. Bashlykov, Z.G. Galiakbarov, A.I. Kashtanov, Especially refractory elements and compounds, (reference-book), Metallurgy, Moscow, (1969). 372 pp. in Russian

    Google Scholar 

  38. G. Machin, G. Beynon, F. Edler, S. Fourrez, J. Hartmann, D. Lowe, R. Morice, M. Sadli, M. Villamanan, HIMERT: A pan-European project for the development of metal-carbon eutectics as temperature standards, A report presented at 8th Temperature Symposium, Chicago, 21–24 Oct 2002

    Google Scholar 

  39. V. Korobenko, A. Savvatimskiy, Electrical resistivity of expanded liquid carbon at high temperatures and high pressures, in Proceedings of the International Conference Thermal conductivity 30 and Thermal expansion 18, DEStech Publication, Inc., 2010, 787–793

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Savvatimskiy .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Savvatimskiy, A. (2015). Experimental Setup in Fast Heating of Carbon. In: Carbon at High Temperatures. Springer Series in Materials Science, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-319-21350-7_7

Download citation

Publish with us

Policies and ethics