Skip to main content

Radon: A Geochemical and Geophysical Tracer in Marine System

  • Chapter
  • First Online:
Radon: A Tracer for Geological, Geophysical and Geochemical Studies

Part of the book series: Springer Geochemistry ((SPRIGEO))

  • 1052 Accesses

Abstract

The observed disequilibrium between 222Rn and 226Ra in aqueous system is one of the most widely used and successful applications of U-Th-series radionuclides. The observed radon concentration gradients at key interfaces such as sediment-water and air-water have been widely utilized for the past five decades to investigate several geochemical and geophysical processes in marine and lacustrine environments. In this chapter, the most important applications of radon as a tracer in aqueous system are reviewed and presented. Those include: i) determination of gas exchange rate coefficient at air-sea interface; ii) estimation of isopycnal and diapcynal mixing coefficients in the upper ocean as well as the bottom ~200 m of the water column; and iii) quantification of amount of groundwater discharge in rivers, coastal ocean, and lake water using a mass balance approach of 222Rn. From the measurements of nutrients and other key trace metals in the advecting fluids, the fluxes of these species to aqueous systems can also be quantified. Radon-derived exchange rate coefficient can also serve as a proxy to determine exchange coefficient for other gases including O2, CO2, N2, etc. Vertical transport rates of 222Rn can be utilized to deduce the transport rates of other tracers as well as estimation of buoyance fluxes or heat flux rates. The excess inventory of 222Rn in the water column provides direct information on the rates of sedimentation, including possible information on the boundary scavenging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bender M, Kinter S, Cassar N, Wanninkhof R (2011) Evaluating gas transfer velocity parametrizations using upper ocean radon distributions. J Geophys Res 116:C02010. doi:10.1029/2009JC005805

    Article  Google Scholar 

  • Berelson WM, Buchholtz MR, Hammond DE, Santschi PH (1987) Radon fluxes measured with the MANOP Bottom Lander. Deep-Sea Res 34:1209–28 [13.2.4]

    Google Scholar 

  • Broecker WS (1965) An application of natural radon to problems in oceanic circulation. In: Ichiye DT (ed) Symposium on diffusion in ocean and fresh waters, pp 116–145. Lamont-Doherty Geol. Observatory, Palisades, NY. [5.5.3, 10.4.2, 10.5, 10.5.1, 11.5]

    Google Scholar 

  • Broecker WS, Peng T-H (1971) The vertical distribution of radon in the BOMEX area. Earth Planet Sci Lett 11:99–108 [10.5.1]

    Google Scholar 

  • Broecker WS, Peng T-H (1974) Gas exchange rates between air and sea. Tellus 26:21–35

    Article  Google Scholar 

  • Broecker WS, Peng T-H (1982). Tracers in the sea, Eldigo press

    Google Scholar 

  • Broecker WS, Li YH, Cromwell J (1967) Radium-226 and radon-222: concentration in Atlantic and Pacific Oceans. Science 158:1307–1310

    Google Scholar 

  • Broecker WS, Cromwell J, Li YH (1968) Rates of vertical eddy diffusion near the ocean floor based on measurements of the distribution of excess Rn-222. Earth Planet Sci Lett 5:101–105

    Google Scholar 

  • Burnett WC et al (2006) Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci Total Environ 367:498–543

    Article  Google Scholar 

  • Cable JE, Bugna GC, Burnett WC, Chanton JP (1996) Application of Rn-222 and CH4 for assessment of groundwater discharge to the coastal ocean. Limnol Oceanogr 41:1347–1353

    Article  Google Scholar 

  • Charette M, Morris P, Henderson P, Moore WS (2015) Radium isotope distributions during the US GEOTRACES North Atlantic Cruises. Mar. Chem. 177:184–195

    Google Scholar 

  • Chung Y-C (1974a) Radium-226 and Ra-Ba relationships in Antarctic and Pacific waters. Earth Planet Sci Lett 23:125–135

    Article  Google Scholar 

  • Chung Y-C (1974b) Transient excess radón profiles in Pacific bottom wáter. Earth Planet Sci Lett 21:295–300

    Article  Google Scholar 

  • Chung Y, Kim K (1980) Excess Rn-222 and the benthic boundary layer in the western and southern Indian Ocean. Earth Planet Sci Lett 49(2):351–359

    Google Scholar 

  • Colbert SL, Berelson WM, Hammond DE (2008) Radon-222 budget in Catalina Harbo, CA 2: Flow dynamics and residence time in a tidal beach. Limnol Oceanogr 53:659–665

    Article  Google Scholar 

  • Colman JA, Armstrong DE (1987) Verticale eddy diffusivity determined with Rn-222 in the benthic boundary-layer of ice-covered lakes. Limnol Oceanogr 32(3):577–590

    Article  Google Scholar 

  • Cochran JK (1992) The oceanic chemistry of the uranium- and thorium-series nuclides. In: Ivanovich M, Harmon RS (eds) Uranium-series disequilibrium, 2nd edn. Publications, Oxford Science, pp 334–395

    Google Scholar 

  • Cook PG, Favreau G, Dighton JC, Tickell S (2003) Determining natural groundwater influx to a tropical river using radon, chloroflurocarbons and ionic environmental tracers. J Hydrol 277:74–88

    Article  Google Scholar 

  • Elsinger RJ, Moore WS (1983) Gas exchange in the Pee Dee River based on Rn-222 evasion. Geophys Res Lett 10:443–446

    Google Scholar 

  • Emerson S (1975) Gas exchange rates in small Canadian Shield lakes. Limnol Oceanogr 20(5):754–761

    Article  Google Scholar 

  • Emerson S, Broecker WS, Schindler DW (1973) Gas exchange rates in a small lake as determined by the radon method. J Fish Res Bd Can 30:1475–1484

    Article  Google Scholar 

  • Glover DM, Reeburgh WS (1987) Radon-222 and radium-226 in southeastern Bering Sea shelf waters and sediment. Cont Shelf Res 7(5):433–456

    Article  Google Scholar 

  • Hammond DE, Fuller C (1979) The use of Rn-22 to estimate benthic exchange and atmospheric exchange rates in San Francisco Bay. In: San Francisco Bay: the urbanized estuary, pp 213–30. California Academy of Science, San Francisco

    Google Scholar 

  • Hammond DE, Simpson HJ, Mathieu G (1977) Radon 222 distribution and transport across the sediment-water interface in the Hudson River estuary. J Geophys Res 82(27):3913–3920

    Article  Google Scholar 

  • Hammond DE, Fuller CC, Harmon D et al (1985) Benthic fluxes in San Francisco Bay. Hydrobiologica 129:69–90

    Google Scholar 

  • Hartman B, Hammond DE (1984) Gas exchange rates across the sediment-water interfaces in south San Francisco Bay. J Geophys Res 89:3593–3603

    Article  Google Scholar 

  • Huh C-A, Kadko DC (1992) Marine sediments and sedimentation processes. In: Ivanovich M, Harmon RS (eds) Uranium-series disequilibrium, 2nd edn. Publications, Oxford Science, pp 460–486

    Google Scholar 

  • Huh C-A, Ku TL (1984). Radiochemical observations on manganese nodules from three sedimentary environments in the north Pacific. Geochim Cosmochim Acta 48:951–63

    Google Scholar 

  • Imboden DM, Emerson S (1978) Natural radon and phosphorus as limnologic tracers: horizontal and vertical eddy diffusion in Greifensee. Limnol Oceanogr 23:77–90

    Article  Google Scholar 

  • Imboden DM, Joller Th (1984) Turbulent mixing in the hypolimnion of Baldeggersee (Switzerland) traced by natural radon-222. Limnol Oceanogr 29(4):831–844

    Article  Google Scholar 

  • Kadko DC, Rosenberg ND, Lupton JE, Collier RW, Lilley MD (1990) Chemical reaction rates and entrainment within the Endeavour Ridge hydrothermal plume. Earth Planet Sci Lett 99:315–335

    Article  Google Scholar 

  • Key RM, Guinasso NL, Schink DR (1979) Emanation of radon-222 from marine sediments. Mar Chem 7:221–250

    Google Scholar 

  • Key RM, Moore WS, Sarmiento JL (1992) Transient tracers in the Ocean North Atlantic study final data report for 228Ra and 226Ra. Technical Report No. 92–2, Ocean Tracer Laboratory, Princeton University, Princeton, NJ

    Google Scholar 

  • Krishnaswami S, Cochran JK (1978) Uranium and thorium series nuclides in oriented ferromanganese nodules: growth rates, turn over times and nuclide behavior. Earth Planet Sci Lett 40:45–62

    Google Scholar 

  • Ku T-L, Luo SD (1994) New appraisal of Ra-226 as a large-scale oceanic mixing tracer. J Geophys Res 99:10255–10273

    Google Scholar 

  • Ku T-L, Li YH, Mathieu GG, Wong HK (1970) Radium in the Indian-Antarctic Ocean south of Australia. J Geophys Res 75(27):5286–5292

    Article  Google Scholar 

  • Lewis WK, Whitman WC (1924) Principles of gas absorption. Ind Eng Chem 17:1215–1220

    Article  Google Scholar 

  • Martin WR, Banta GT (1992) The measurement of sediment irrigation rates: a comparison of the Br-tracer and 222Rn/226Ra disequilibrium techniques. J Mar Res 50:125–154

    Article  Google Scholar 

  • Peng T-H (1973) Determination of gas exchange rates across sea-air interface by the radon method. PhD thesis, Columbia Univ

    Google Scholar 

  • Peng T-H, Takahashi T, Broecker WS (1974) Surface radon measurements in the North Pacific Ocean station Papa. J Geophys Res 79:1772–1780

    Google Scholar 

  • Peng T-H, Broecker WS, Mathieu GG, Li Y-H, Brainbridge AE (1979) Radon evasion rates in the Atlantic and Pacific Oceans as determined during the GEOSECS Program. J Geophys Res 84:2471–2486

    Google Scholar 

  • Roether W (1983) Field measurement of air-sea gas transfer–methodical search. Bound-Layer Meteoro 27(1):97–103

    Google Scholar 

  • Roether W, Kromer B (1978) Field determination of air-sea gas-exchange by continuous measurement of Rn-222. Pure Appl Phys 116(2–3):476–485

    Google Scholar 

  • Rosenberg ND, Lupton JE, Kadko D, Collier R, Lilley MD, Pak H (1988) Estimation of heat and chemical fluxes from a seafloor hydrothermal vent field using radon measurements. Nature 334:604–607

    Article  Google Scholar 

  • Rudnicki MD, Elderfield H (1992) Helium, radon and manganese at the TAG and Snakepit hydrothermal vent fields, 26° and 23° N Mid-Atlantic Ridge. Earth Planet Sci Lett 113:307–321

    Article  Google Scholar 

  • Sarmiento JL, Broecker WS (1980) Ocean floor Rn-222 standing crops in the Atlantic and Pacific Oceans. Earth Planet Sci Lett 49:341–350

    Google Scholar 

  • Sarmiento JL, Rooth CGH (1980) A comparison of vertical and isopycnal mixing models in the deep sea based on radon 222 measurements. J Geophys Res 85(C3):1515–1518

    Article  Google Scholar 

  • Sarmiento JL, Feely WH, Moore WS, Bainfridge AE, Broecker WS (1976) The relationship between vertical eddy diffusion and buoyancy gradient in the deep sea. Earth Planet Sci Lett 32:357–370

    Article  Google Scholar 

  • Sarmiento JL, Broecker WS, Biscaye PE (1978) Excess bottom radon 222 distribution in deep ocean passages. J Geophys Res 83(10):5068–5076

    Article  Google Scholar 

  • Smethie WM Jr, Takahashi T, Chipman DW, Ledwell JR (1985) Gas exchange and CO2 flux in the tropical Atlantic Ocean determined from 222Rn and pCO2 measurements. J Geophys Res 90:7005–7022

    Article  Google Scholar 

  • Trier RM, Broecker WS, Feely HW (1972) Ra-228 profile at second GEOSECS Intercalibration Station, 1970, in North Atlantic. Earth Planet Sci Lett 16(1):141. doi:10.1016/0012-821X(72)90249-X

    Google Scholar 

  • Wanninkhof R (1992) Relationship between gas exchange and wind speed over the ocean. J Geophys Res 97(C5):7373–7381. doi:10.1029/92JC00188

    Article  Google Scholar 

  • Wanninkhof R, McGillis W (1999) A cubic relationship between air-sea CO2 exchange and wind speed. Geophys Res Lett 26(13):201–291. doi:10.1029/1999GL900363

    Article  Google Scholar 

  • Wanninkhof R, Asherm WE, Ho DT et al (2009) Advances in quantifying air-sea gas exchange and environmental forcing. Ann Rev Mar Sci 1(1):213–244

    Article  Google Scholar 

  • Yeung LY, Berelson WM, Hammond DE, Prokopenko MG, Wolfe C, Rollins N (2015) Upper-ocean gas dynamics from radon profiles in the Eastern Tropical South Pacific. Deep-Sea Res I 99:35–45. doi:10.1016/j/dsr.2015.01.008

    Article  Google Scholar 

  • Young Y, Kim K (1980) Excess 222Rn and the benthic boundary layer in the western and southern Indian Ocean. Earth Planet Sci Lett 49:351–359

    Article  Google Scholar 

Download references

Acknowledgments

This chapter greatly benefited from an in-depth review by Doug Hammond. Thanks to Katie Krupp for a final editorial review of this chapter. The work synthesized in this chapter was partially supported by NSF Grants (OCE-1237059 and PLR-1434578).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Baskaran .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baskaran, M. (2016). Radon: A Geochemical and Geophysical Tracer in Marine System. In: Radon: A Tracer for Geological, Geophysical and Geochemical Studies. Springer Geochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-21329-3_6

Download citation

Publish with us

Policies and ethics