Skip to main content

Computational Modeling Under Uncertainty: Challenges and Opportunities

  • Chapter
  • First Online:
Uncertainty in Biology

Abstract

Computational Biology has increasingly become an important tool for biomedical and translational research. In particular, when generating novel hypothesis despite fundamental uncertainties in data and mechanistic understanding of biological processes underpinning diseases. While in the present book, we have reviewed the necessary background and existing novel methodologies that set the basis for dealing with uncertainty, there are still many “grey”, or less well-defined, areas of investigations offering both challenges and opportunities. This final chapter in the book provides some reflections on those areas, namely: (1) the need for novel robust mathematical and statistical methodologies to generate hypothesis under uncertainty; (2) the challenge of aligning those methodologies in a context that requires larger computational resources; (3) the accessibility of modeling tools for less mathematical literate researchers; and (4) the integration of models with—omics data and its application in clinical environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.digital-patient.net/files/DP-Roadmap_FINAL_N.pdf.

  2. 2.

    http://cordis.europa.eu/fp7/ict/e-infrastructure/docs/bms-agenda.pdf.

  3. 3.

    https://ec.europa.eu/digital-agenda/en/pillar-v-research-and-innovation/action-53-financially-support-joint-ict-research-infrastructures.

  4. 4.

    http://cordis.europa.eu/fp7/ict/e-infrastructure/docs/bms-presa-6.pdf.

  5. 5.

    http://www.scilogs.com/scientific_and_medical_libraries/what-is-e-science-and-how-should-it-be-managed/.

  6. 6.

    http://meetings.cshl.edu/courses/2014/c-comp14.shtml.

References

  1. Almomani, R., van der Heijden, J., Ariyurek, Y., Lai, Y., Bakker, E., van Galen, M., den Dunnen, J.T.: Experiences with array-based sequence capture; toward clinical applications. Eur. J. Hum. Genet. EJHG 19(1), 50–5 (2011). doi:10.1038/ejhg.2010.145

    Google Scholar 

  2. Anderson, A.R., Quaranta, V.: Integrative mathematical oncology. Nat. Rev. Cancer 8(3), 227–234 (2008). doi:10.1038/nrc2329

    Google Scholar 

  3. Bock, C.: Analysing and interpreting DNA methylation data. Nat. Rev. Genet. 13(10), 705–719 (2012). doi:10.1038/nrg3273

    Article  Google Scholar 

  4. Cascante, M., de Atauri, P., Gomez-Cabrero, D., Wagner, P., Centelles, J.J., Marin, S., Sabatier, P.: Workforce preparation: the Biohealth computing model for master and PhD students. J. Trans. Med. 12(2), S11 (2014). doi:10.1186/1479-5876-12-S2-S11

    Google Scholar 

  5. Cedersund, G., Samuelsson, O., Ball, G., Tegnér, J., Gomez-Cabrero, D.: Optimization in biology parameter estimation and the associated optimization problem. In: Uncertainty in Biology, A Computational Modeling Approach. Springer, Chem (2016, this volume)

    Google Scholar 

  6. Cedersund, G.: Conclusions via unique predictions obtained despite unidentifiability—new definitions and a general method 279, 3513–3527 (2012). doi:10.1111/j.1742-4658.2012.08725.x

    Google Scholar 

  7. Cedersund, G.: Prediction uncertainty estimation despite unidentifiability: an overview of recent developments. In: Uncertainty in Biology, A Computational Modeling Approach. Springer, Chem (2016, this volume)

    Google Scholar 

  8. Cedersund, G.: Conclusions via unique predictions obtained despite unidentifiability-new definitions and a general method. FEBS J. 279(18), 3513–3527 (2012). doi:10.1111/j.1742-4658.2012.08725.x

    Article  Google Scholar 

  9. Cedersund, G., Roll, J.: Systems biology: model based evaluation and comparison of potential explanations for given biological data. FEBS J. 276(4), 903–922 (2009). doi:10.1111/j.1742-4658.2008.06845.x

    Article  Google Scholar 

  10. Cedersund, G., Strålfors, P.: Putting the pieces together in diabetes research: towards a hierarchical model of whole-body glucose homeostasis. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 36(1), 91–104 (2009). doi:10.1016/j.ejps.2008.10.027

    Google Scholar 

  11. Chan, S.Y., Loscalzo, J.: The emerging paradigm of network medicine in the study of human disease. Circ. Res. 111(3), 359–374 (2012). doi:10.1161/CIRCRESAHA.111.258541

    Article  Google Scholar 

  12. Donnet, S., Samson, A.: A review on estimation of stochastic differential equations for pharmacokinetic/pharmacodynamic models. Adv. Drug Delivery Rev. 65(7), 929–939 (2013). doi:10.1016/j.addr.2013.03.005

    Article  Google Scholar 

  13. Droste, P., Miebach, S., Niedenführ, S., Wiechert, W., Nöh, K.: Biosystems visualizing multi-omics data in metabolic networks with the software Omix—a case study. BioSyst. 105(2), 154–161 (2011). doi:10.1016/j.biosystems.2011.04.003

    Article  Google Scholar 

  14. Eriksson, O., Tegnér, J.: Modeling and model simplification to facilitate biological insights and predictions. In: Uncertainty in Biology, A Computational Modeling Approach. Springer, Chem (2016, this volume)

    Google Scholar 

  15. Finak, G., Frelinger, J., Jiang, W., Newell, E.W., Ramey, J., Davis, M.M., Gottardo, R.: OpenCyto: an open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis. PLoS Comput. Biol. 10(8), e1003806 (2014). doi:10.1371/journal.pcbi.1003806

    Google Scholar 

  16. Geris, L., Gomez-Cabrero, D.: An introduction to uncertainty in the development of computational models of biological processes. In: Uncertainty in Biology, A Computational Modeling Approach. Springer, Chem (2016, this volume)

    Google Scholar 

  17. Gomez-Cabrero, D., Ardid, S., Cano-Colino, M., Tegnér, J., Compte, A.: Neuroswarm: a methodology to explore the constraints that function imposes on simulation parameters in large-scale networks of biological neurons. In: Uncertainty in Biology, A Computational Modeling Approach. Springer, Chem (2016, this volume)

    Google Scholar 

  18. Gomez-Cabrero, D., Compte, A., Tegner, J.: Workflow for generating competing hypothesis from models with parameter uncertainty. Interface Focus 1(3), 438–449 (2011). doi:10.1098/rsfs.2011.0015

    Article  Google Scholar 

  19. Gomez-Cabrero, D., Menche, J., Cano, I., Abugessaisa, I., Huertas-Migueláñez, M., Tenyi, A., Tegnér, J.: Systems Medicine: from molecular features and models to the clinic in COPD. J. Trans. Med. 12(2), S4 (2014). doi:10.1186/1479-5876-12-S2-S4

    Google Scholar 

  20. Gomez-Ramirez, J., Sanz, R.: On the limitations of standard statistical modeling in biological systems: a full Bayesian approach for biology. Prog. Biophys. Mol. Biol. 113(1), 80–91 (2013). doi:10.1016/j.pbiomolbio.2013.03.008

    Article  Google Scholar 

  21. Gupta, A., Briat, C., Khammash, M.: A scalable computational framework for establishing long-term behavior of stochastic reaction networks. PLoS Comput. Biol. 10(6), e1003669 (2014). doi:10.1371/journal.pcbi.1003669

    Article  Google Scholar 

  22. Heyn, H., Esteller, M.: DNA methylation profiling in the clinic: applications and challenges. Nat. Rev. Gen. 13(10), 679–692 (2012). doi:10.1038/nrg3270

    Article  Google Scholar 

  23. Hodgkin, A.L., Huxley, A.F.: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo This information is current as of January 29, This is the final published version of this article?; it is available at?: This version of the article may not be. J. physiol. Paris 116, 449–472 (1952)

    Article  Google Scholar 

  24. Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U.: COPASI-a COmplex PAthway SImulator. Bioinformatics 22(24), 3067–3074 (2006)

    Article  Google Scholar 

  25. Huertas-Migueláñez, M., Mora, D., Cano, I., Maier, D., Gomez-Cabrero, D., Lluch-Ariet, M., Miralles, F.: Simulation environment and graphical visualization environment: a COPD use-case. J. Trans. Med. 12(2), S7 (2014). doi:10.1186/1479-5876-12-S2-S7

    Google Scholar 

  26. Hug, S., Schmidl, D., Bo Li, W., Greiter, M.B., Theis, F.J.: Bayesian model selection methods and their application to biological ODE systems. In: Uncertainty in Biology, A Computational Modeling Approach. Springer, Chem (2016, this volume)

    Google Scholar 

  27. Jones, P.A., Liang, G.: Rethinking how DNA methylation patterns are maintained. Nat. Rev. Gen. 10(11), 805–811 (2009). doi:10.1038/nrg2651

    Google Scholar 

  28. Joyce, A.R., Palsson, B.Ø.: The model organism as a system: integrating “omics” data sets, 7(March), 198–210. doi:10.1038/nrm1857

    Google Scholar 

  29. Kent, E., Neumann, S., Kummer, U., Mendes, P.: What can we learn from global sensitivity analysis of biochemical systems? PloS One 8(11), e79244 (2013). doi:10.1371/journal.pone.0079244

    Article  Google Scholar 

  30. Kuepfer, L., Peter, M., Sauer, U., Stelling, J.: Ensemble modeling for analysis of cell signaling dynamics. Nat. Biotechnol. 25(9), 1001–1006 (2007). doi:10.1038/nbt1330

    Article  Google Scholar 

  31. Lejon, A., Samaey, G.: Stochastic modeling and simulation methods for biological processes: overview. In: Uncertainty in Biology, A Computational Modeling Approach. Springer, Chem (2016, this volume)

    Google Scholar 

  32. Luco, R.F., Allo, M., Schor, I.E., Kornblihtt, A.R., Misteli, T.: Review Epigenetics in alternative pre-mRNA splicing. Cell 144(1), 16–26 (2010). doi:10.1016/j.cell.2010.11.056

    Article  Google Scholar 

  33. Magklara, A., Lomvardas, S.: Stochastic gene expression in mammals: lessons from olfaction. Trends Cell Biol. 23(9), 449–456 (2013). doi:10.1016/j.tcb.2013.04.005

    Article  Google Scholar 

  34. Mannakee, B.K., Ragsdale, A.P., Transtrum, M.K., Gutenkunst, R.N.: Sloppiness and the geometry of parameter space. In: Uncertainty in Biology, A Computational Modeling Approach. Springer, Chem (2016, this volume)

    Google Scholar 

  35. Metzker, M.L.: Sequencing technologies—the next generation. Nat. Rev. Gen. 11(1), 31–46 (2010). doi:10.1038/nrg2626

    Article  Google Scholar 

  36. Miyoshi, N.S.B., Pinheiro, D.G., Silva, W.A., Felipe, J.C.: Computational framework to support integration of biomolecular and clinical data within a translational approach. BMC Bioinform. 14, 180 (2013). doi:10.1186/1471-2105-14-180

    Article  Google Scholar 

  37. Petersson, K.M., Nichols, T.E., Poline, J.B., Holmes, A.P.: Statistical limitations in functional neuroimaging. I. Non-inferential methods and statistical models. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354(1387), 1239–1260 (1999). doi:10.1098/rstb.1999.0477

    Google Scholar 

  38. Ramsey, S.A., Gold, E.S., Aderem, A.: A systems biology approach to understanding atherosclerosis 2(3), 79–89 (2010). doi:10.1002/emmm.201000063.A

    Google Scholar 

  39. Rand, D.A.: Mapping global sensitivity of cellular network dynamics: sensitivity heat maps and a global summation law. J. Roy. Soc. Interface/Roy. Soc. 5(1)(00), S59–69 (2008). doi:10.1098/rsif.2008.0084.focus

  40. Raychaudhuri, S., Sandor, C., Stahl, E.A., Freudenberg, J., Lee, H.-S., Jia, X., de Bakker, P.I.W.: Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 44(3), 291–296 (2012). doi:10.1038/ng.1076

    Google Scholar 

  41. Sawcer, S., Hellenthal, G., Pirinen, M., Spencer, C.C.A., Patsopoulos, N.A., Moutsianas, L., Compston, A.: Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476(7359), 214–219 (2011). doi:10.1038/nature10251

    Google Scholar 

  42. Seoane, J.A., Aguiar-Pulido, V., Munteanu, C.R., Rivero, D., Rabunal, J.R., Dorado, J., Pazos, A.: Biomedical data integration in computational drug design and bioinformatics. Curr. Comput. Aided Drug Des. 9(1), 108–117 (2013). http://www.ncbi.nlm.nih.gov/pubmed/23294434

  43. Sumner, T., Shephard, E., Bogle, I.D.L.: A methodology for global-sensitivity analysis of time-dependent outputs in systems biology modelling. J. R. Soc. Interface 2156–2166 (2012)

    Google Scholar 

  44. Tucker, W.: Interval methods. In: Uncertainty in Biology, A Computational Modeling Approach. Springer, Chem (2016, this volume)

    Google Scholar 

  45. Van Geit, W., Achard, P., De Schutter, E.: Neurofitter: a parameter tuning package for a wide range of electrophysiological neuron models. Front. Neuroinform. 1(November), 1 (2007). doi:10.3389/neuro.11.001.2007

    Google Scholar 

  46. Van Riel, N.A.W: Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments. Brief. Bioinform. 7(4), 364–74 (2006). doi:10.1093/bib/bbl040

    Google Scholar 

  47. Van Schepdael, A., Carlier, A., Geris, L.: Sensitivity analysis by design of experiments. In: Uncertainty in Biology, A Computational Modeling Approach. Springer, Chem (2016, this volume)

    Google Scholar 

  48. Velez de Mendizabal, N., Carneiro, J., Sole, R.V., Goni, J., Bragard, J., Martinez-Forero, I., Villoslada,P., : Modeling the effector - regulatory T cell cross-regulation reveals the intrinsic character of relapses in Multiple Sclerosis. BMC Systems Biology 5(1), 114 (2011). doi:10.1186/1752-0509-5-114

    Google Scholar 

  49. Viceconti, M., Hunter, P., McCormack, K., Henney, A., Omholt, S.W., Graf, N., Morley-Fletcher, E., Geris, L., Hose, R.: Big data, big knowledge: big data for personalised healthcare, White Paper from the VPH Institute (2014). http://www.vph-institute.org/upload/white-paper-big-data-and-vph-v7mc_54662d0e8ff52.pdf

  50. Villoslada, P., Baranzini, S.: Data integration and systems biology approaches for biomarker discovery: Challenges and opportunities for multiple sclerosis. J. Neuroimmunol. 18, (2012). doi:10.1016/j.jneuroim.2012.01.001

    Google Scholar 

  51. Zhu, J., Zhang, B., Smith, E.N., Drees, B., Brem, R.B., Bumgarner, R.E., Schadt, E.E.: Complex. Yeast Regul. Netw. 40(7), 854–861 (2009). doi:10.1038/ng.167.Integrating

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gomez-Cabrero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gomez-Cabrero, D., Tegnér, J., Geris, L. (2016). Computational Modeling Under Uncertainty: Challenges and Opportunities. In: Geris, L., Gomez-Cabrero, D. (eds) Uncertainty in Biology. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-21296-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21296-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21295-1

  • Online ISBN: 978-3-319-21296-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics