Skip to main content

Waves in Spatially-Disordered Neural Fields: A Case Study in Uncertainty Quantification

  • Chapter
  • First Online:

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 17))

Abstract

Neural field models have been used for many years to model a variety of macroscopic spatiotemporal patterns in the cortex. Most authors have considered homogeneous domains, resulting in equations that are translationally invariant. However, there is an obvious need to better understand the dynamics of such neural field models on heterogeneous domains. One way to include heterogeneity is through the introduction of randomly-chosen “frozen” spatial noise to the system. In this chapter we investigate the effects of including such noise on the speed of a moving “bump” of activity in a particular neural field model. The spatial noise is parameterised by a large but finite number of random variables, and the effects of including it can be determined in a computationally-efficient way using ideas from the field of Uncertainty Quantification. To determine the average speed of a bump in this type of heterogeneous domain involves evaluating a high-dimensional integral, and a variety of methods are compared for doing this. We find that including heterogeneity of this form in a variety of ways always slows down the moving bump.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27(2), 77–87 (1977)

    Google Scholar 

  2. Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Rev. 52(2), 317–355 (2010)

    Google Scholar 

  3. Barthelmann, V., Novak, E., Ritter, K.: High dimensional polynomial interpolation on sparse grids. Adv. Comput. Math. 12(4), 273–288 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ben-Yishai, R., Bar-Or, R.L., Sompolinsky, H.: Theory of orientation tuning in visual cortex. Proc. Nat. Acad. Sci. 92(9), 3844–3848 (1995)

    Article  Google Scholar 

  5. Brackley, C.A., Turner, M.S.: Random fluctuations of the firing rate function in a continuum neural field model. Phys. Rev. E 75(4), 041913 (2007)

    Article  Google Scholar 

  6. Bressloff, P.C.: Traveling fronts and wave propagation failure in an inhomogeneous neural network. Phys. D: Nonlinear Phenom. 155(1), 83–100 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bressloff, P.C.: From invasion to extinction in heterogeneous neural fields. J. Math. Neurosci. 2, 6 (2012)

    Article  MathSciNet  Google Scholar 

  8. Bressloff, P.C.: Spatiotemporal dynamics of continuum neural fields. J. Phys. A: Math. Theor. 45(3), 033001 (2012)

    Article  MathSciNet  Google Scholar 

  9. Bressloff, P.C., Folias, S.E.: Front bifurcations in an excitatory neural network. SIAM J. Appl. Math. 65(1), 131–151 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bressloff, P.C., Webber, M.A.: Front propagation in stochastic neural fields. SIAM J. Appl. Dyn. Syst. 11(2), 708–740 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bressloff, P.C., Wilkerson, J.: Traveling pulses in a stochastic neural field model of direction selectivity. Front. Comput. Neurosci. 6(90), 14 (2012)

    Google Scholar 

  12. Cools, R., Kuo, F.Y., Nuyens, D.: Constructing embedded lattice rules for multivariate integration. SIAM J. Sci. Comput. 28(6), 2162–2188 (2006)

    Google Scholar 

  13. Coombes, S.: Waves, bumps, and patterns in neural field theories. Biol. Cybern. 93(2), 91–108 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Coombes, S., Laing, C.R.: Pulsating fronts in periodically modulated neural field models. Phys. Rev. E 83(1), 011912 (2011)

    Article  MathSciNet  Google Scholar 

  15. Coombes, S., Schmidt, H., Laing, C.R., Svanstedt, N., Wyller, J.A.: Waves in random neural media. Discrete Contin. Dyn. Syst. 32, 2951-2970 (2012)

    Google Scholar 

  16. Coombes, S., Venkov, N.A., Shiau, L., Bojak, I., Liley, D.T.J., Laing, C.R.: Modeling electrocortical activity through improved local approximations of integral neural field equations. Phys. Rev. E 76(5), 051901 (2007)

    Article  MathSciNet  Google Scholar 

  17. Dick, J., Kuo, F.Y., Sloan, I.H.: High-dimensional integration: The quasi-Monte Carlo way. Acta Numerica 22, 133–288, 5 (2013)

    Google Scholar 

  18. Folias, S.E.: Nonlinear analysis of breathing pulses in a synaptically coupled neural network. SIAM J. Appl. Dyn. Syst. 10(2), 744–787 (2011)

    Google Scholar 

  19. Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numer. Algorithms 18(3), 209–232 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ghanem, R., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)

    Google Scholar 

  21. Heiss, F., Winschel, V.: Likelihood approximation by numerical integration on sparse grids. J. Econometrics 144(1), 62–80 (2008)

    Article  MathSciNet  Google Scholar 

  22. Huang, S.P., Quek, S.T., Phoon, K.K.: Convergence study of the truncated Karhunen-Loeve expansion for simulation of stochastic processes. Int. J. Numer. Methods Eng. 52(9), 1029–1043 (2001)

    Article  MATH  Google Scholar 

  23. Kilpatrick, Z.P., Ermentrout, B.: Wandering bumps in stochastic neural fields. SIAM J. Appl. Dyn. Syst. 12(1), 61–94 (2013)

    Google Scholar 

  24. Kilpatrick, Z.P., Folias, S.E., Bressloff, P.C.: Traveling pulses and wave propagation failure in inhomogeneous neural media. SIAM J. Appl. Dyn. Syst. 7(1), 161–185 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kuehn, Christian, Riedler, Martin: Large deviations for nonlocal stochastic neural fields. J. Math. Neurosci. 4(1), 1 (2014)

    Article  MathSciNet  Google Scholar 

  26. Kuo, F.Y., Sloan, I.H.: Lifting the Curse of Dimensionality. Notices of the AMS, 52(11):1320–1328 (2005)

    Google Scholar 

  27. Laing, C., Coombes, S.: The importance of different timings of excitatory and inhibitory pathways in neural field models. Netw.: Comput. Neural Syst. 17(2), 151–172 (2006)

    Article  Google Scholar 

  28. Laing, C.R., Longtin, A.: Noise-induced stabilization of bumps in systems with long-range spatial coupling. Phys. D: Nonlinear Phenom. 160(3), 149–172 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Laing, C.R., Troy, W.C.: PDE methods for nonlocal models. SIAM J. Appl. Dyn. Syst 2(3), 487–516 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Laing, C.R., Frewen, T.A., Kevrekidis, I.G.: Coarse-grained dynamics of an activity bump in a neural field model. Nonlinearity 20(9), 2127 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Laing, C.R., Troy, W.C., Gutkin, B., Ermentrout, G.B.: Multiple bumps in a neuronal model of working memory. SIAM J. Appl. Math. 63, 62 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Laing, C., Zou, Y., Smith, B., Kevrekidis, I.: Managing heterogeneity in the study of neural oscillator dynamics. J. Math. Neurosci. 2(1), 5 (2012)

    Google Scholar 

  33. Le Maître, O.P., Knio, O.M.: Spectral Methods for Uncertainty Quantification. Springer, New York (2010)

    Google Scholar 

  34. Mike, G., Kuo, F.Y., Sloan, I.H., Waterhouse, B.J.: Quasi-Monte Carlo for finance applications. ANZIAM J. 50, C308–C323 (2008)

    Google Scholar 

  35. Owen, M.R., Laing, C.R., Coombes, S.: Bumps and rings in a two-dimensional neural field: splitting and rotational instabilities. New J. Phys. 9, 378 (2007)

    Article  Google Scholar 

  36. Pinto, D.J., Ermentrout, G.B.: Spatially structured activity in synaptically coupled neuronal networks: I. traveling fronts and pulses. SIAM J. Appl. Math. 62(1), 206–225 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  37. Rankin, J., Meso, A.I., Masson, G.S., Faugeras, O., Kornprobst, P.: Bifurcation study of a neural field competition model with an application to perceptual switching in motion integration. J. Comput. Neurosci. 36(2), 193–213 (2014)

    Article  MathSciNet  Google Scholar 

  38. Shardlow, Tony: Numerical simulation of stochastic PDEs for excitable media. J. Comput. Appl. Math. 175(2), 429–446 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  39. Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J. W., Whiting, D.R.: Theoretical predictions for spatial covariance of the electroencephalographic signal during the anesthetic-induced phase transition: Increased correlation length and emergence of spatial self-organization. Phys. Rev. E 68, 021902 (2003)

    Google Scholar 

  40. Trefethen, L.N.: Spectral methods in MATLAB. Society for Industrial Mathematics, vol. 10 (2000)

    Google Scholar 

  41. Xiu, D.: Fast numerical methods for stochastic computations: a review. Commun. Comput. phys. 5(2–4), 242–272 (2009)

    Google Scholar 

  42. Xiu, D.: Numerical methods for stochastic computations: a spectral method approach. Princeton University Press (2010)

    Google Scholar 

  43. Xiu, D., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005)

    Google Scholar 

  44. Xiu, D., Karniadakis G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Google Scholar 

  45. Xiu, D., Kevrekidis, I.G., Ghanem, R.: An equation-free, multiscale approach to uncertainty quantification. Comput. Sci. Eng. 7(3), 16–23 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo R. Laing .

Editor information

Editors and Affiliations

Conflict of Interest

Conflict of Interest

The author declares that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Laing, C.R. (2016). Waves in Spatially-Disordered Neural Fields: A Case Study in Uncertainty Quantification. In: Geris, L., Gomez-Cabrero, D. (eds) Uncertainty in Biology. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-21296-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21296-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21295-1

  • Online ISBN: 978-3-319-21296-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics