Advertisement

Personalized Intelligent Mobility Platform: An Enrichment Approach Using Social Media

  • Ruben Costa
  • Paulo Figueiras
  • Carlos Gutierrez
  • Luka Bradesko
Chapter
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 42)

Abstract

This chapter aims to present a technical approach for developing a personalized mobility knowledge base supported by mechanisms for extracting and processing tweets related with traffic events, in order to support highly specific assistance and recommendations to urban commuters. In order to address a personalized mobility knowledge base, a step-wise approach is presented with the purpose of construction and enriching a knowledge model from heterogeneous data sources providing real-time information via Personal Digital Assistants (PDAs). The approach presented is decomposed into several steps, starting from data collection and knowledge base formalization targeting the development of a personalized intelligent route planner, enabling a more efficient decision support to urban commuters. The work presented here, is still part of ongoing work currently addressed under the EU FP7 MobiS project. Results achieved so far do not address the final conclusions of the project but form the basis for the formalization of the domain knowledge do be acquired.

Keywords

Intelligent transportation systems Knowledge acquisition Social media 

Notes

Acknowledgments

The authors acknowledge the European Commission for its support and partial funding and the partners of the research project: FP7-318452 MobiS.

References

  1. 1.
    Brabham, D.: Moving the crowd at istockphoto: the composition of the crowd and motivations for participation in a crowdsourcing application. First Monday 13(6), 1–33 (2008)CrossRefGoogle Scholar
  2. 2.
    Bifet, A., Frank, E.: Sentiment knowledge discovery in twitter streaming data. In: Proceedings of the 13th International Conference on Discovery Science, pp. 1–15. Springer, Berlin, Heidelberg (2010)Google Scholar
  3. 3.
    Gimpel, K., Schneider, N., O’Connor, B., Das, D., Mills, D., Eisenstein, J., Heilman, M., Yogatama, D., Flanigan, J., Smith, N.A.: Part-of-speech tagging for twitter: annotation, features, and experiments. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 2., pp. 42–47 (2011)Google Scholar
  4. 4.
    Costa, R., Figueiras, P., MalÚ, P. Jermol, M., Kostas, K.: Mobis—personalized mobility services for energy efficiency and security through advanced artificial intelligence techniques. In: 5th KES International Conference on Intelligent Decision Technologies, pp. 296–306. Sesimbra, IOS Press, Amsterdam, The Netherlands (2013)Google Scholar
  5. 5.
    IBM: An architectural blueprint for autonomic computing. Autonomic computing white paper, IBM Corp., Hawthorne, NY, USA (2005)Google Scholar
  6. 6.
    Fensel, D., Harmelen, F., Andersson, B., Brennan, P., Cunningham, H., Valle, E.D., Fischer, F., Huang, Z., Kiryakov, A., Lee, T.K., Schooler, L., Tresp, V., Wesner, S., Witbrock, M., Zhong, N.: Towards LarKC: a platform forweb-scale reasoning. In: International Conference on Semantic Computing, pp. 524–529. IEEE Press, Santa Clara, New York (2008)Google Scholar
  7. 7.
    Lee, W.H., Tseng, S.S., Tsai, S.H.: A knowledge based real-time travel time prediction system for urban network. Expert Syst. Appl. 36, 4239–4247 (2009)CrossRefGoogle Scholar
  8. 8.
    Tseng, P.J., Hung, C.C., Chang, T.H., Chuang, Y.H.: Real-time urban traffic sensing with GPS equipped probe vehicles. In: International Conference on ITS Telecommunications, pp. 306–310. IEEE Press, New York, Taipei, Taiwan (2012)Google Scholar
  9. 9.
    Chen, C.H., Hsu, C.W., Yao, C.C.: A novel design for full automatic parking system. In: 12th International Conference on ITS Telecommunications, pp. 175–179. IEEE, New York, Taipei, Taiwan (2012)Google Scholar
  10. 10.
    Hung, J.C., Lee, A.M.C., Shih, T.K.: Customized navigation systems with the mobile devices of public transport. In: 12th International Conference on ITS Telecommunications, pp. 113–118. IEEE, New York, Taipei, Taiwan (2012)Google Scholar
  11. 11.
    Chueh, T.H., Chou, K.L., Liu, N., Tseng, H.R.: An analysis of energy saving and carbon reduction strategies in the transportation sector in taiwan. In: 12th International Conference on ITS Telecommunications, pp. 316–318. IEEE, New York, Taipei, Taiwan (2012)Google Scholar
  12. 12.
    Chen, I.X., Wu, Y.C., Liao, I.C., Hsu, Y.Y.: A high-scalable core telematics platform design for intelligent transport systems. In: 12th International Conference on ITS Telecommunications, pp. 412–417. IEEE, New York, Taipei, Taiwan (2012)Google Scholar
  13. 13.
    Forbus, K., Hinrichs, T.: Companion cognitive systems: a step towards human-level AI, pp. 83–95. AI Magazine (2006)Google Scholar
  14. 14.
    Lasecki, W.: Real-time conversational crowd assistants. In: Extended Abstracts on Human Factors in Computing Systems, pp. 2725 – 2730. ACM, New York, NY, USA (2013)Google Scholar
  15. 15.
    Witbrock, M.: Acquiring and using large scale knowledge. In: International Conference on Information Technology Interfaces, pp. 37–42. Cavtat, Dubrovnik, IEEE, New York (2010)Google Scholar
  16. 16.
    Kittur, A., Smus, B., Khamkar, S., Kraut, R.: Crowdforge: crowdsourcing complex work. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, pp. 43–52. St Andrews, UK, ACM, New York, NY, USA (2011)Google Scholar
  17. 17.
    Chandrasiri, N., Nawa, K., Ishii, A., Li, S., Yamabe, S., Hirasawa, T., Sato, Y., Suda, Y., Matsumura, T., Taguchi, K.: Driving skill analysis using machine learning: The full curve and curve segmented cases. In: 12th International Conference on ITS Telecommunications, pp. 542–547, IEEE, New York, Taipei (2012)Google Scholar
  18. 18.
    Wu, B.F., Chen, Y.H., Yeh, C.H.: Fuzzy logic based driving behavior monitoring using hidden markov models. In: 12th International Conference on ITS Telecommunications, pp. 447–451. IEEE, New York, Taipei (2012)Google Scholar
  19. 19.
    Wanichayapong, N., Pruthipunyaskul, W., Pattara-Atikom, W., Chaovalit, P.: Social-based traffic information extraction and classification. In: 12th International Conference on ITS Telecommunications, pp. 107–112. IEEE, New York, Taipei (2011)Google Scholar
  20. 20.
    Schulz, A., Ristoski, P., Paulheim, H.: I see a car crash: Real-time detection of small scale incidents in microblogs. In: ESWC 2013 Satellite Events, Montpellier, France, May 26–30. Lecture Notes in Computer Science, vol. 7955, pp. 22–33. Springer, Heidelberg (2013)Google Scholar
  21. 21.
    Singhal, A., Choi, J., Hindle, D., Lewis, D., Pereira, F.: At&t at trec-7. In: Proceedings of the Seventh Text Retrieval Conference, pp. 239–252. National Institute of Standards and Technology, Gaithersburg, Maryland, United States (1999)Google Scholar
  22. 22.
    Paulheim, H., Fümkranz, J.: Unsupervised generation of data mining features from linked open data. In: Proceedings of the 2nd International Conference on Web Intelligence, Mining and Semantics, pp. 1–12. ACM, New York, NY, USA (2012)Google Scholar
  23. 23.
    Abel, F., Hauff, C., Houben, G.J., Stronkman, R., Tao, K.: Semantics + filtering + search = twitcident. exploring information in social web streams. In: Conference on Hypertext and Hypermedia, pp. 285–294. ACM (2012)Google Scholar
  24. 24.
    Rogstadius, J., Vukovic, M., Teixeira, C.A., Kostakos, V., Karapanos, E., Laredo, J.A.: Crisistracker: crowdsourced social media curation for disaster awareness. IBM J. Res. Dev. 57(5), 1–4 (2013)CrossRefGoogle Scholar
  25. 25.
    Li, R., Lei, K.H., Khadiwala, R., Chang, K.C.: Tedas: a twitter-based event detection and analysis system. In: 28th International Conference on Data Engineering, pp. 1273–1276. IEEE, Washington, DC, New York (2012)Google Scholar
  26. 26.
    Ritter, A., Etzioni, O., Clark, S.: Open domain event extraction from twitter. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1104–1112. ACM, New York, NY, USA (2012)Google Scholar
  27. 27.
    Kumar, S., Barbier, G., Abbasi, M.A., Liu, H.: Tweettracker: An analysis tool for humanitarian and disaster relief. In: Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media, pp. 661–662. (2011)Google Scholar
  28. 28.
    Okolloh, O.: Ushahidi, or ‘testimony’: Web 2.0 tools for crowdsourcing crisis information. Participatory Learn. Action 59(1), 65–70 (2009)Google Scholar
  29. 29.
    Yin, J., Lampert, A., Cameron, M., Robinson, B., Power, R.: Using social media to enhance emergency situation awareness. IEEE Intell. Syst. 27(6), 52–59 (2012)Google Scholar
  30. 30.
    Fung, G.P.C., Yu, J.X., Yu, P.S., Lu, H.: Parameter free bursty events detection in text streams. In: Proceedings of the 31st International Conference on Very Large Data Bases, pp. 181–192. ACM, New York, NY, USA (2005)Google Scholar
  31. 31.
    Mikheev, A., Moens, M., Grover, C.: Named entity recognition without gazetteers. In: Proceedings of the Ninth Conference on European chapter of the Association for Computational Linguistics, pp. 1–8. Association for Computational Linguistics, Stroudsburg, PA, USA (1999)Google Scholar
  32. 32.
    Mirowski, P., Ranzato, M., Lecun, Y.: Dynamic auto-encoders for semantic indexing. In: Proceedings of the NIPS 2010 Workshop on Deep Learning, pp. 1–9. Whistler (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ruben Costa
    • 1
  • Paulo Figueiras
    • 1
  • Carlos Gutierrez
    • 1
  • Luka Bradesko
    • 2
  1. 1.UNINOVACentre of Technology and SystemsCaparicaPortugal
  2. 2.Jozef Stefan InstituteJubljanaSlovenia

Personalised recommendations