Advertisement

Wind Rendering in 3D Modeling Landscape Scenes

  • Margarita Favorskaya
  • Anastasia Tkacheva
Chapter
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 42)

Abstract

The modeling of 3D landscape scenes includes two main issues: the creation of landscape scene and the natural effects rendering. A hybrid approach based on laser data scanning and templates of L-systems was developed to design trees and brush of various types and sizes. The space colonization algorithm was applied to make the tree models realistic and compact described and stored. Wind rendering is a necessary procedure, without which any modeling scene looks non-realistic. Three algorithms for wind rendering under changeable parameters were proposed. They have a minimal computational cost and simulate weak wind, mid-force wind, and storm wind. The approach based on mega-texture visualization was used to make a 3D landscape scene with wind effects a real-time application. The user can tune the various trees and wind parameters and manipulate a modeling scene by using the software tool “REWELS” designed in the development environment RAD Studio 2010.

Keywords

Wind rendering Laser scanning Space colonization algorithm  L-system 3D landscape scene Mega-texture 

References

  1. 1.
    Zhang, Q.L., Pang, M.-Y.: A survey of modeling and rendering trees. In: Pan, Z., Zhang, X., Rhalibi, A.E., Woo, W., Li, Y. (eds) Technologies for E-Learning and Digital Entertainment, LNCS Edutainment, pp. 757–764. Springer Link, Heidelberg (2008)Google Scholar
  2. 2.
    Qu, H., Wang, Y., Cai, L., Wang, T., Lu, Z.: Orange tree simulation under heterogeneous environment using agent-based model ORASIM. Simul. Model. Pract. Theory 23, 1935 (2012)CrossRefGoogle Scholar
  3. 3.
    Neubert, B., Pirk, S., Deussenl, O., Dachsbacher, C.: Improved model- and view-dependent pruning of large botanical scenes. Comput. Graph. Forum 30(6), 1708–1718 (2011)CrossRefGoogle Scholar
  4. 4.
    Lindenmayer, A.: Mathematical models for cellular interaction in development. J. Theor. Biol. 18(3), 300–315 (1968)CrossRefGoogle Scholar
  5. 5.
    Talton, J.O., Lou, Y., Lesser, S., Duke, J., Mech, R., Koltun, V.: Metropolis procedural modeling. ACM Trans. Graph. 30(11), 114 (2011)Google Scholar
  6. 6.
    Xu, L., Mould, D.: A procedural method for irregular tree models. Comp. Graph. 36(8), 1036–1047 (2012)CrossRefGoogle Scholar
  7. 7.
    Anastacio, F., Sousa, M.C., Samavati, F., Jorge, J.A.: Modeling plant structures using concept sketches. In: 4th International Symposium on Non-Photorealistic Animation and Rendering (NPAR ÃÅ06), ACM, 105–113 (2006)Google Scholar
  8. 8.
    Chen, X., Neubert, B., Xu, Y.-Q., Deussen, O., Kang, S.B.: Sketch-based tree modeling using markov random field. ACM Trans. Graph. 27(5), 19 (2008)CrossRefGoogle Scholar
  9. 9.
    Reche, A., Martin, I., Drettakis, G.: Volumetric reconstruction and interactive rendering of trees from photographs. ACM (SIGGRAPH-04) 720–727 (2004)Google Scholar
  10. 10.
    Anastacio, F., Prusinkiewicz, P., Sousa, M.C.: Sketch-based parameterization of L-systems using illustration-inspired construction lines and depth modulation. Comput. Graph. 33(4), 440–451 (2009)CrossRefGoogle Scholar
  11. 11.
    Assa, J., Cohen-Or, D.: More of the same: synthesizing a variety by structural layering. Comput. Graph. 36(4), 250–256 (2012)CrossRefGoogle Scholar
  12. 12.
    Xu, H., Gossett, N., Chen, B.: Knowledge and heuristic-based modeling of laser-scanned trees. ACM Trans. Graph. 26(4), 1931 (2007)CrossRefGoogle Scholar
  13. 13.
    Livny, Y., Yan, F., Olson, M., Chen, B., Zhang, H., El-Sana, J.: Automatic reconstruction of tree skeletal structures from point clouds. ACM Trans. Graph. 29(151), 18 (2010)Google Scholar
  14. 14.
    Jaakkola, A., Hyyppa, J., Kukko, A., Yu, X., Kaartinen, H., Lehtomaki, M., Lin, Y.: A low-cost multi-sensorial mobile mapping system and its feasibility for tree measurements. J. Photogrammetry Remote Sens. 65, 514–522 (2010)CrossRefGoogle Scholar
  15. 15.
    Habel, R., Kusternig, A., Wimmer, M.: Physically guided animation of trees. Eurographics 28(2), 523–532 (2009)Google Scholar
  16. 16.
    Akagi, Y., Kitajima, K.: Computer animations of swaying trees based on physical animation. Comp. Graph. 30(4), 529–539 (2006)CrossRefGoogle Scholar
  17. 17.
    Chuang, Y.Y., Goldman, D.B., Zheng, K.C., Curless, B., Salesin, D.H., Szeliski, R.: Animating pictures with stochastic motion textures. ACM Trans. Graph. 24(3), 853–860 (2005)Google Scholar
  18. 18.
    Zhang, L., Zhang, Y., Jiang, Z., Li, L., Chen, W., Peng, Q.: Precomputing data-driven tree animation. Comp. Anim. Virtual Worlds 18(4–5), 371–382 (2007)CrossRefGoogle Scholar
  19. 19.
    Fugmann, H., Schindler, D., Mayer, H.: A dynamic tree sway model. In: 2nd International Conference Wind Effects on Trees, pp. 269–275 (2009)Google Scholar
  20. 20.
    Newson, T., Sagi, P., Miller, C., Mitchell, S.: Application of yield surfaces in three-dimensional VHM load space to the stability of trees under wind loading. In: 2nd International Conference Wind Effects on Trees, pp. 141–147 (2009)Google Scholar
  21. 21.
    Peltola, H., Kellomaki, S.: A mechanistic model for calculating windthrow and stem breakage at stand edge. Silva Fennica 27, 99111 (1993)Google Scholar
  22. 22.
    Seidl, R., Rammera, W., Blennow, K.: Simulating wind disturbance impacts on forest landscapes: tree-level heterogeneity matters. Environ. Model. Softw. 51, 111 (2014)CrossRefGoogle Scholar
  23. 23.
    Hale, S.E., Gardiner, B.A., Wellpott, A., Nicoll, B.C., Achim, A.: Wind loading of trees: influence of tree size and competition. Eur. J. For. Res. 131, 203217 (2012)CrossRefGoogle Scholar
  24. 24.
    Seidl, R., Rammer, W., Scheller, R.M.: Spies TA an individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecol. Model. 231, 87100 (2012)CrossRefGoogle Scholar
  25. 25.
    Seidl, R., Spies, T.A., Rammer, W., Steel, E.A., Pabst, R.J., Olsen, K.: Multi-scale drivers of spatial variation in old-growth forest carbon density disentangled with Lidar and an indi-vidual-based landscape model. Ecosystems 15, 13211335 (2012)CrossRefGoogle Scholar
  26. 26.
    Bunting, P., Armston, J., Lucas, R.M., Clewley, D.: Sorted pulse data (SPD) library. Part I: a generic file format for LiDAR data from pulsed laser systems in terrestrial environments. Comput. Geosci. 56, 197206 (2013)Google Scholar
  27. 27.
    Favorskaya, M., Zotin, A., Danilin, I., Smolentcheva, S.: Realistic 3D-modeling of forest growth with natural effect. In: Phillips-Wren, G., Jain, L.C., Nakamatsu, K., Howlett, R.J. (eds.) Advances in Intelligent Decision Technologies in Smart Innovation, Systems and Technologies, p. 191199. Springer, Heidelberg (2010)Google Scholar
  28. 28.
    Runions, A., Lane, B., Prusinkiewicz, P.: Modeling trees with a space colonization algorithm. In: Eurographics Workshop on Natural Phenomena, p. 6370 (2007)Google Scholar
  29. 29.
    de Lima Bicho, A., Rodrigues, R.A., Musse, S.R., Jung, C.R., Paravisi, M., Magalhaes, L.P.: Simulating crowds based on a space colonization algorithm. Comp. Graph. 36(2), 7079 (2012)Google Scholar
  30. 30.
    Favorskaya, M., Zotin, A., Chunina, A.: Procedural modeling of broad-leaved trees under weather conditions in 3D virtual reality. In: Tsihrintzis, G.A., Virvou, M., Jain, L.C., Howlett, R.J. (eds.) Intelligent Interactive Multimedia Systems and Services in Smart Innovation, Systems and Technologies, p. 5159. Springer, Berlin (2011)Google Scholar
  31. 31.
    Perlin, K.: An image synthesizer. ACM SIGGRAPH 19(3), 287296 (1985)Google Scholar
  32. 32.
    Singh, P.A., Zhao, N., Chen, S.C., Zhang, K.: Tree animation for a 3D interactive visualization system for hurricane impacts. In: IEEE International Conference on Multimeia and Expo, ICME, p. 598601 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Siberian State Aerospace UniversityKrasnoyarskRussia

Personalised recommendations