Skip to main content

Neutrinos in Nuclear Physics: RPA, MEC, 2p2h (Pionic Modes of Excitation in Nuclei)

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 182))

Abstract

This chapter is devoted to the study of weak interactions on nucleons and nuclei. I pay a special attention to the study of neutrino and antineutrino quasi-elastic reactions in nuclei , which are of the greatest importance for neutrino oscillation experiments, and crucial to achieve the precision goals required to make new discoveries, like the CP violation in the leptonic sector, possible. In particular, I discuss RPA correlations and 2p2h (multi-nucleon) effects on charged-current neutrino-nucleus reactions, and the influence of these nuclear effects on the recently measured MiniBooNE flux folded differential cross sections, and on the so-called nucleon axial mass puzzle. The modification of the nucleon-nucleon interaction inside of a nuclear medium , specially in the spin-isospin channel, will be also studied, since it plays a central role in understanding these nuclear effects. Other physical processes involving electrons and muons which are sensitive to this part of the interaction are also discussed, underlying the importance of the medium corrections also in these systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The value of \(M_A\) extracted from early CCQE measurements on deuterium and, to a lesser extent, hydrogen targets is \(M_A = 1.016 \pm 0.026\) GeV [10], which is in excellent agreement with the pion electro-production result, \(M_A = 1.014 \pm 0.016\) GeV, obtained from the nucleon axial radius [7, 11]. Furthermore, NOMAD also reported in 2008 a small value of \(M_A = 1.05 \pm 0.02~(\mathrm{stat})~\pm 0.06~ \mathrm{(syst)}\) GeV [12].

  2. 2.

    Medium polarization or collective RPA correlations account for the change of the electroweak coupling strengths, from their free nucleon values, due to the presence of strongly interacting nucleons [16, 17].

  3. 3.

    A useful expression needed to evaluate the pion self-energy through \(\varDelta h\) excitation is given by the closure property,

    figure a

    in Cartesian basis.

  4. 4.

    Note that the lowest order contribution to \(\varGamma \) is essentially given by the imaginary part of the first \(\mu \)-selfenergy diagram depicted in Fig. 13, when the ph excitation and the outgoing neutrino are put on shell. Up to some kinematical corrections, this imaginary part is given by the imaginary part of the Lindhard function \(\bar{U}(p_\nu -p_\mu )\), which accounts for the ph excitation, and by \(\overline{\sum }\sum |T|^2\) which accounts for transition squared operator [51].

  5. 5.

    Note that in (53) the second term of (9) has not been included because it does not provide imaginary part for \(q^0=E_\mu -E_\nu > 0\).

  6. 6.

    This is taken into account by means of the factor \(1-n_2(k)\) in the Lindhard function of (53).

  7. 7.

    See [30] for more details, both of the model and its comparison to experimental data.

  8. 8.

    The elementary pion production cross sections \(\sigma _{ep}\) and \(\sigma _{en}\) can be found for instance in [68].

  9. 9.

    Neutral current driven QE processes were studied in [65].

  10. 10.

    Theoretical uncertainties of the model are estimated in [95], where the deviations of the predictions of the many body framework of [17] from those obtained within a simple Fermi gas model are also quantified.

References

  1. E. Fernandez-Martinez, D. Meloni, Importance of nuclear effects in the measurement of neutrino oscillation parameters. Phys. Lett. B697, 477–481 (2011). doi:10.1016/j.physletb.2011.02.043

    Article  ADS  Google Scholar 

  2. Y. Nakajima et al., Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam. Phys. Rev. D83, 012, 005 (2011). doi:10.1103/PhysRevD.83.012005

  3. A. Aguilar-Arevalo et al., First measurement of the Muon neutrino charged current quasielastic double differential cross section. Phys. Rev. D81, 092, 005 (2010). doi:10.1103/PhysRevD.81.092005

  4. A. Aguilar-Arevalo et al., Measurement of neutrino-induced charged-current charged pion production cross sections on mineral oil at E\(_{\nu }\sim 1~\rm GeV\). Phys. Rev. D83, 052, 007 (2011). doi:10.1103/PhysRevD.83.052007

  5. A. Aguilar-Arevalo et al., Measurement of \(\nu _\mu \)-induced charged-current neutral pion production cross sections on mineral oil at \(E_\nu \in 0.5-2.0\) GeV. Phys. Rev. D83, 052, 009 (2011). doi:10.1103/PhysRevD.83.052009

  6. A. Aguilar-Arevalo et al., First measurement of the Muon anti-neutrino double-differential charged current quasi-elastic cross section. Phys. Rev. D88, 032, 001 (2013). doi:10.1103/PhysRevD.88.032001

  7. L. Alvarez-Ruso, Y. Hayato, J. Nieves, Progress and open questions in the physics of neutrino cross sections at intermediate energies. New J. Phys. 16, 075, 015 (2014). doi:10.1088/1367-2630/16/7/075015

    Google Scholar 

  8. H. Gallagher, G. Garvey, G.P. Zeller, Neutrino-nucleus interactions. Ann. Rev. Nucl. Part. Sci. 61, 355–378 (2011). doi:10.1146/annurev-nucl-102010-130255

    Article  ADS  Google Scholar 

  9. J.G. Morfin, J. Nieves, J.T. Sobczyk, Recent developments in neutrino/antineutrino—nucleus interactions. Adv. High Energy Phys. 2012, 934, 597 (2012). doi:10.1155/2012/934597

    Google Scholar 

  10. A. Bodek, S. Avvakumov, R. Bradford, H.S. Budd, Vector and axial nucleon form factors: a duality constrained parameterization. Eur. Phys. J. C53, 349–354 (2008). doi:10.1140/epjc/s10052-007-0491-4

    Article  ADS  Google Scholar 

  11. V. Bernard, N. Kaiser, U.G. Meissner, Measuring the axial radius of the nucleon in pion electroproduction. Phys. Rev. Lett. 69, 1877–1879 (1992). doi:10.1103/PhysRevLett.69.1877

    Article  ADS  Google Scholar 

  12. V. Lyubushkin et al., A study of quasi-elastic muon neutrino and antineutrino scattering in the NOMAD experiment. Eur. Phys. J. C63, 355–381 (2009). doi:10.1140/epjc/s10052-009-1113-0

    Article  ADS  Google Scholar 

  13. O. Benhar, P. Coletti, D. Meloni, Electroweak nuclear response in quasi-elastic regime. Phys. Rev. Lett. 105, 132, 301 (2010). doi:10.1103/PhysRevLett.105.132301

  14. J. Nieves, F. Sanchez, I. Ruiz Simo, M. Vicente Vacas, Neutrino energy reconstruction and the shape of the CCQE-like total cross section. Phys. Rev. D85, 113, 008 (2012). doi:10.1103/PhysRevD.85.113008

  15. S. Boyd, S. Dytman, E. Hernandez, J. Sobczyk, R. Tacik, Comparison of models of neutrino-nucleus interactions. AIP Conf. Proc. 1189, 60–73 (2009). doi:10.1063/1.3274191

    Article  ADS  Google Scholar 

  16. R.J. Blin-Stoyle, Fundamental Interactions and the Nucleus (1973)

    Google Scholar 

  17. J. Nieves, J.E. Amaro, M. Valverde, Inclusive quasi-elastic neutrino reactions. Phys. Rev. C70, 055, 503 (2004). doi:10.1103/PhysRevC.70.055503, 10.1103/PhysRevC.72.019902

  18. J. Nieves, I. Ruiz Simo, M. Vicente Vacas, The nucleon axial mass and the MiniBooNE quasielastic neutrino-nucleus scattering problem. Phys. Lett. B707, 72–75 (2012). doi:10.1016/j.physletb.2011.11.061

    Google Scholar 

  19. M. Martini, M. Ericson, G. Chanfray, J. Marteau, A unified approach for nucleon knock-out, coherent and incoherent pion production in neutrino interactions with nuclei. Phys. Rev. C80, 065, 501 (2009). doi:10.1103/PhysRevC.80.065501

  20. M. Martini, M. Ericson, G. Chanfray, J. Marteau, Neutrino and antineutrino quasielastic interactions with nuclei. Phys. Rev. C81, 045, 502 (2010). doi:10.1103/PhysRevC.81.045502

  21. J. Nieves, I. Ruiz Simo, M. Vicente Vacas, Inclusive charged–current neutrino–nucleus reactions. Phys. Rev. C83, 045, 501 (2011). doi:10.1103/PhysRevC.83.045501

  22. C. Albertus, J.E. Amaro, J. Nieves, What does free space Lambda-Lambda interaction predict for Lambda-Lambda hypernuclei? Phys. Rev. Lett. 89, 032, 501 (2002). doi:10.1103/PhysRevLett.89.032501

  23. C. Albertus, J.E. Amaro, J. Nieves, Pionic decay of Lambda hypernuclei in a continuum shell model. Phys. Rev. C67, 034, 604 (2003). doi:10.1103/PhysRevC.67.034604

  24. R. Carrasco, E. Oset, Interaccion of real photons with nuclei from 100-MeV to 500-MeV. Nucl. Phys. A536, 445–508 (1992). doi:10.1016/0375-9474(92)90109-W

    Article  ADS  Google Scholar 

  25. P. Fernandez de Cordoba, J. Nieves, E. Oset, M. Vicente-Vacas, Coherent pion production in the (He-3, t) reaction in nuclei. Phys. Lett. B319, 416–420 (1993). doi:10.1016/0370-2693(93)91744-8

    Google Scholar 

  26. P. Fernandez de Cordoba, E. Oset, Projectile and target delta excitation in the (He-3, t) and (He-3, He-3) reactions. Nucl. Phys. A544, 793–810 (1992). doi:10.1016/0375-9474(92)90541-Q

    Google Scholar 

  27. P. Fernandez de Cordoba, E. Oset, Semi phenomenological approach to nucleon properties in nuclear matter. Phys. Rev. C46, 1697–1709 (1992). doi:10.1103/PhysRevC.46.1697

    Google Scholar 

  28. P. Fernandez de Cordoba, Y. Ratis, E. Oset, J. Nieves, M.J. Vicente-Vacas, B. Lopez-Alvaredo, F. Gareev, Projectile delta excitation in alpha—proton scattering. Nucl. Phys. A586, 586–606 (1995). doi:10.1016/0375-9474(94)00815-5

    Google Scholar 

  29. C. Garcia-Recio, J. Nieves, E. Oset, Pion cloud contribution to K+ nucleus scattering. Phys. Rev. C51, 237–251 (1995). doi:10.1103/PhysRevC.51.237

    ADS  Google Scholar 

  30. A. Gil, J. Nieves, E. Oset, Many body approach to the inclusive (e, e-prime) reaction from the quasielastic to the delta excitation region. Nucl. Phys. A627, 543–598 (1997). doi:10.1016/S0375-9474(97)00513-7

    Article  ADS  Google Scholar 

  31. S. Hirenzaki, P. Fernandez de Cordoba, E. Oset, Roper excitation in alpha—proton scattering. Phys. Rev. C 53, 277–284 (1996). doi:10.1103/PhysRevC.53.277

    Google Scholar 

  32. S. Hirenzaki, J. Nieves, E. Oset, M. Vicente-Vacas, Coherent pi0 electroproduction. Phys. Lett. B 304, 198–202 (1993). doi:10.1016/0370-2693(93)90282-M

    Article  ADS  Google Scholar 

  33. J. Nieves, E. Oset, Pionic decay of lambda hypernuclei. Phys. Rev. C47, 1478–1488 (1993). doi:10.1103/PhysRevC.47.1478

    ADS  Google Scholar 

  34. J. Nieves, E. Oset, C. Garcia-Recio, A theoretical approach to pionic atoms and the problem of anomalies. Nucl. Phys. A554, 509–553 (1993). doi:10.1016/0375-9474(93)90245-S

    Article  ADS  Google Scholar 

  35. J. Nieves, E. Oset, C. Garcia-Recio, Many body approach to low-energy pion nucleus scattering. Nucl. Phys. A554, 554–579 (1993). doi:10.1016/0375-9474(93)90246-T

    Article  ADS  Google Scholar 

  36. E. Oset, P. Fernandez de Cordoba, J. Nieves, A. Ramos, L.L. Salcedo, A review on mesonic decay of lambda hypernuclei. Prog. Theor. Phys. Suppl. 117, 461–476 (1994). doi:10.1143/PTPS.117.461

    Google Scholar 

  37. E. Oset, P. Fernandez de Cordoba, L.L. Salcedo, R. Brockmann, Decay modes of \(\Sigma \) and \(\Lambda \) hypernuclei. Phys. Rept. 188, 79 (1990). doi:10.1016/0370-1573(90)90091-F

    Google Scholar 

  38. E. Oset, H. Toki, W. Weise, Pionic modes of excitation in nuclei. Phys. Rept. 83, 281–380 (1982). doi:10.1016/0370-1573(82)90123-5

    Article  ADS  Google Scholar 

  39. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems. Dover (2003)

    Google Scholar 

  40. R.D. Mattuck, A Guide to Feynman Diagrams in the Many Body Problem, 2d edn. (1976)

    Google Scholar 

  41. F. Mandl, G. Shaw, Quantum field theory (1985), http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471496839.html

  42. C. Itzykson, J.B. Zuber, Quantum field theory (1980), http://dx.doi.org/10.1063/1.2916419

  43. M. Ericson, Nuclear critical opalescence. Nucl. Phys. A335, 309–314 (1980). doi:10.1016/0375-9474(80)90186-4

    Article  ADS  Google Scholar 

  44. J.D. Bjorken, S.D. Drell, Relativistic Quantum Fields (1965)

    Google Scholar 

  45. W.M. Alberico, M. Ericson, A. Molinari, Quenching and hardening in the transverse quasielastic peak. Nucl. Phys. A379, 429 (1982). doi:10.1016/0375-9474(82)90007-0

    Article  ADS  Google Scholar 

  46. A. Faessler, F. Fernandez, G. Lubeck, K. Shimizu, The quark model and the nature of the repulsive core of the nucleon nucleon interaction. Phys. Lett. B112, 201–205 (1982). doi:10.1016/0370-2693(82)90961-3

    Article  ADS  Google Scholar 

  47. M. Oka, K. Yazaki, Nuclear force in a quark model. Phys. Lett. B90, 41–44 (1980). doi:10.1016/0370-2693(80)90046-5

    Article  ADS  Google Scholar 

  48. K. Holinde, Two nucleon forces and nuclear matter. Phys. Rept. 68, 121–188 (1981). doi:10.1016/0370-1573(81)90188-5

    Article  ADS  Google Scholar 

  49. G.E. Brown, A.D. Jackson, The Nucleon-Nucleon Interaction (1979)

    Google Scholar 

  50. G.E. Brown, Many Body Problems (1972)

    Google Scholar 

  51. H.C. Chiang, E. Oset, P. Fernandez de Cordoba, Muon capture revisited. Nucl. Phys. A510, 591 (1990). doi:10.1016/0375-9474(90)90350-U

    Google Scholar 

  52. H. Primakoff, Theory of muon capture. Rev. Mod. Phys. 31, 802–822 (1959). doi:10.1103/RevModPhys.31.802

    Article  ADS  MATH  Google Scholar 

  53. J.E. Amaro, C. Maieron, J. Nieves, M. Valverde, Equivalence between local fermi gas and shell models in inclusive muon capture from nuclei. Eur. Phys. J. A24, 343–353 (2005). doi:10.1140/epja/i2005-10034-2

    Article  ADS  Google Scholar 

  54. N. Auerbach, B.A. Brown, Weak interaction rates involving C-12, N-14, and O-16. Phys. Rev. C65, 024, 322 (2002). doi:10.1103/PhysRevC.65.024322

  55. A.C. Hayes, I.S. Towner, Shell model calculations of neutrino scattering from C-12. Phys. Rev. C61, 044,603 (2000). doi:10.1103/PhysRevC.61.044603

  56. N. Jachowicz, K. Heyde, J. Ryckebusch, S. Rombouts, Continuum random phase approximation approach to charged current neutrino nucleus scattering. Phys. Rev. C65, 025, 501 (2002). doi:10.1103/PhysRevC.65.025501

  57. C.W. Kim, S.L. Mintz, Total neutrino scattering cross-sections and total muon capture rates in nuclei. Phys. Rev. C31, 274–277 (1985). doi:10.1103/PhysRevC.31.274

    ADS  Google Scholar 

  58. E. Kolbe, K. Langanke, G. Martinez-Pinedo, P. Vogel, Neutrino nucleus reactions and nuclear structure. J. Phys. G29, 2569–2596 (2003). doi:10.1088/0954-3899/29/11/010

    Article  ADS  Google Scholar 

  59. E. Kolbe, K. Langanke, P. Vogel, Muon capture, continuum random phase approximation and in-medium renormalization of the axial vector coupling constant. Phys. Rev. C50, 2576–2581 (1994). doi:10.1103/PhysRevC.50.2576

    ADS  Google Scholar 

  60. E. Kolbe, K. Langanke, P. Vogel, Muon capture on nuclei with N > Z, random phase approximation, and in-medium renormalization of the axial vector coupling constant. Phys. Rev. C62, 055, 502 (2000). doi:10.1103/PhysRevC.62.055502

  61. N.C. Mukhopadhyay, Nuclear muon capture. Phys. Rept. 30, 1–144 (1977). doi:10.1016/0370-1573(77)90073-4

    Article  ADS  Google Scholar 

  62. N.C. Mukhopadhyay, H.C. Chiang, S.K. Singh, E. Oset, Inclusive muon capture in light nuclei. Phys. Lett. B 434, 7–13 (1998). doi:10.1016/S0370-2693(98)00790-4

    Article  ADS  Google Scholar 

  63. J. Navarro, J. Bernabeu, J.M.G. Gomez, J. Martorell, Total muon capture rates for N=Z nuclei in the 1P shell. Nucl. Phys. A 375, 361–380 (1982). doi:10.1016/0375-9474(82)90019-7

    Article  ADS  Google Scholar 

  64. V.G. Nguyen, N. Auerbach, A.Z. Mekjian, Selfconsistent random phase approximation calculations of muon capture rates. Phys. Rev. Lett. 46, 1444–1447 (1981). doi:10.1103/PhysRevLett.46.1444

    Article  ADS  Google Scholar 

  65. J. Nieves, M. Valverde, M. Vicente Vacas, Inclusive nucleon emission induced by quasi-elastic neutrino-nucleus interactions. Phys. Rev. C73, 025, 504 (2006). doi:10.1103/PhysRevC.73.025504

  66. T. Suzuki, D.F. Measday, J.P. Roalsvig, Total nuclear capture rates for negative muons. Phys. Rev. C35, 2212 (1987). doi:10.1103/PhysRevC.35.2212

    ADS  Google Scholar 

  67. P.J. Mulders, Modifications of nucleons in nuclei and other consequences of the quark substructure. Phys. Rept. 185, 83–169 (1990). doi:10.1016/0370-1573(90)90086-H

    Article  ADS  Google Scholar 

  68. E. Amaldi, S. Fubini, G. Furlan, Pion electroproduction. Electroproduction at low-energy and hadron form-factors. Springer Tracts Mod. Phys. 83, 1–162 (1979). doi:10.1007/BFb0048209

    Google Scholar 

  69. C. Ciofi degli Atti, S. Liuti, S. Simula, Nucleon spectral function in complex nuclei and nuclear matter and inclusive quasielastic electron scattering. Phys. Rev. C41, R2474–R2478 (1990). doi:10.1103/PhysRevC.41.R2474

    Google Scholar 

  70. J.E. Amaro, A.M. Lallena, J. Nieves, Radiative pion capture in nuclei: a continuum shell model approach. Nucl. Phys. A623, 529–547 (1997). doi:10.1016/S0375-9474(97)00187-5

    Article  ADS  Google Scholar 

  71. J. Speth, V. Klemt, J. Wambach, G. Brown, The influence of the \(\pi \) and \(\rho \) exchange potential on magnetic properties of nuclei. Nucl. Phys. A343, 382–416 (1980). doi:10.1016/0375-9474(80)90660-0

    ADS  Google Scholar 

  72. S. Nozawa, T.S.H. Lee, Electroproduction of pions on the nucleon. Nucl. Phys. A513, 511–542 (1990). doi:10.1016/0375-9474(90)90396-4

    Article  ADS  Google Scholar 

  73. M. Olsson, Solutions of the multichannel unitarity equations describing the addition of a resonance and background: application to a pole model of photoproduction. Nucl. Phys. B78, 55 (1974). doi:10.1016/0550-3213(74)90115-1

    Article  ADS  Google Scholar 

  74. L. Alvarez-Ruso, E. Hernandez, J. Nieves, M.J.V. Vacas, Watson’s theorem and the \(N\Delta (1232)\) axial transition. Phys.Rev. D93, 014016 (2016). doi:10.1103/PhysRevD.93.014016

  75. P. Barreau et al., Deep Inelastic electron scattering from carbon. Nucl. Phys. A402, 515–540 (1983). doi:10.1016/0375-9474(83)90217-8

    Article  ADS  Google Scholar 

  76. J.E. Amaro, M.B. Barbaro, J.A. Caballero, T.W. Donnelly, A. Molinari, Relativistic effects in electromagnetic nuclear responses in the quasielastic delta region. Nucl. Phys. A657, 161–186 (1999). doi:10.1016/S0375-9474(99)00334-6

    Article  ADS  Google Scholar 

  77. J.E. Amaro, M.B. Barbaro, J.A. Caballero, T.W. Donnelly, A. Molinari, Gauge and Lorentz invariant one pion exchange currents in electron scattering from a relativistic fermi gas. Phys. Rept. 368, 317–407 (2002). doi:10.1016/S0370-1573(02)00195-3

    Article  ADS  Google Scholar 

  78. M. Anghinolfi et al., Quasielastic and inelastic inclusive electron scattering from an oxygen jet target. Nucl. Phys. A602, 405–422 (1996). doi:10.1016/0375-9474(96)00093-0

    Article  ADS  Google Scholar 

  79. E. Bauer, On the role of the delta (1232) on the transverse nuclear response in the (e, e-prime) reaction. Nucl. Phys. A637, 243–279 (1998). doi:10.1016/S0375-9474(98)00235-8

    Article  ADS  Google Scholar 

  80. G. Chanfray, J. Delorme, M. Ericson, A. Molinari, Quasielastic delta excitation in the charge response of the nucleus. Nucl. Phys. A556, 439–452 (1993). doi:10.1016/0375-9474(93)90371-4

    Article  ADS  Google Scholar 

  81. D.B. Day et al., Inclusive electron nucleus scattering at high momentum transfer. Phys. Rev. C48, 1849–1863 (1993). doi:10.1103/PhysRevC.48.1849

    ADS  Google Scholar 

  82. M.J. Dekker, P.J. Brussaard, J.A. Tjon, Relativistic meson exchange currents in the dip region. Phys. Lett. B266, 249–254 (1991). doi:10.1016/0370-2693(91)91034-S

    Article  ADS  Google Scholar 

  83. V. Gadiyak, V. Dmitriev, Nuclear response in electron scattering at high momentum transfer. Nucl. Phys. A639, 685–704 (1998). doi:10.1016/S0375-9474(98)00242-5

    Article  ADS  Google Scholar 

  84. J.W. Van Orden, T.W. Donnelly, Mesonic processes in deep inelastic electron scattering from nuclei. Ann. Phys. 131, 451–493 (1981). doi:10.1016/0003-4916(81)90038-5

    Article  ADS  Google Scholar 

  85. E. Oset, L. Salcedo, \(\Delta \) selfenergy in nuclear matter. Nucl. Phys. A468, 631–652 (1987). doi:10.1016/0375-9474(87)90185-0

    Article  ADS  Google Scholar 

  86. A. Dellafiore, F. Lenz, F.A. Brieva, Particle-hole calculation of the longitudinal response function of C-12. Phys. Rev. C31, 1088–1104 (1985). doi:10.1103/PhysRevC.31.1088

    ADS  Google Scholar 

  87. J. Jourdan, Longitudinal response functions: the coulomb sum revisited. Phys. Lett. B 353, 189–195 (1995). doi:10.1016/0370-2693(95)00581-5

    Article  ADS  Google Scholar 

  88. J. Jourdan, Quasielastic response functions: the coulomb sum revisited. Nucl. Phys. A 603, 117–160 (1996). doi:10.1016/0375-9474(96)00143-1

    Article  ADS  Google Scholar 

  89. Z. Meziani, P. Barreau, M. Bernheim, J. Morgenstern, S. Turck-Chieze et al., Coulomb sum rule for Ca-40, Ca-48, and Fe-56 for |q (Vector)| = 550-MeV/c. Phys. Rev. Lett. 52, 2130–2133 (1984). doi:10.1103/PhysRevLett.52.2130

    Article  ADS  Google Scholar 

  90. Z.E. Meziani et al., Transverse response functions in deep inelastic electron scattering for CA-40, CA-48, and FE-56. Phys. Rev. Lett. 54, 1233–1236 (1985). doi:10.1103/PhysRevLett.54.1233

    Article  ADS  Google Scholar 

  91. A. Zghiche et al., Longitudinal and transverse responses in quasielastic electron scattering from Pb-208 and He-4. Nucl. Phys. A572, 513–559 (1994). doi:10.1016/0375-9474(94)90399-9. [Erratum: Nucl. Phys. A584,757(1995)]

    Google Scholar 

  92. A. Gil, J. Nieves, E. Oset, Inclusive (e, e-prime N), (e, e-prime N N), (e, e-prime pi): reactions in nuclei. Nucl. Phys. A627, 599–619 (1997). doi:10.1016/S0375-9474(97)00515-0

    Article  ADS  Google Scholar 

  93. A. Butkevich, Analysis of flux-integrated cross sections for quasi-elastic neutrino charged-current scattering off \(^{12}\)C at MiniBooNE energies. Phys. Rev. C82, 055, 501 (2010). doi:10.1103/PhysRevC.82.055501

  94. C. Juszczak, J.T. Sobczyk, J. Zmuda, On extraction of value of axial mass from MiniBooNE neutrino quasi-elastic double differential cross section data. Phys. Rev. C82, 045, 502 (2010). doi:10.1103/PhysRevC.82.045502

  95. M. Valverde, J.E. Amaro, J. Nieves, Theoretical uncertainties on quasielastic charged-current neutrino-nucleus cross sections. Phys. Lett. B638, 325–332 (2006). doi:10.1016/j.physletb.2006.05.053

    Article  ADS  Google Scholar 

  96. M. Martini, M. Ericson, G. Chanfray, Neutrino quasielastic interaction and nuclear dynamics. Phys. Rev. C84, 055, 502 (2011). doi:10.1103/PhysRevC.84.055502

  97. S.L. Adler, Photoproduction, electroproduction and weak single pion production in the (3,3) resonance region. Ann. Phys. 50, 189–311 (1968). doi:10.1016/0003-4916(68)90278-9

    Article  ADS  Google Scholar 

  98. J. Bijtebier, A comparison between Salin’s and Adler’s models for neutrino \(\nu N \rightarrow \mu N^*\) reactions. Nucl. Phys. B21, 158–172 (1970)

    ADS  Google Scholar 

  99. C. Llewellyn Smith, Neutrino reactions at accelerator energies. Phys. Rept. 3, 261–379 (1972). doi:10.1016/0370-1573(72)90010-5

    Google Scholar 

  100. T. Leitner, O. Buss, L. Alvarez-Ruso, U. Mosel, Electron- and neutrino-nucleus scattering from the quasielastic to the resonance region. Phys. Rev. C79, 034, 601 (2009). doi:10.1103/PhysRevC.79.034601

  101. E. Hernandez, J. Nieves, M. Valverde, Weak pion production off the nucleon. Phys. Rev. D76, 033, 005 (2007). doi:10.1103/PhysRevD.76.033005

  102. O. Lalakulich, E.A. Paschos, Resonance production by neutrinos. I. J = 3/2 resonances. Phys. Rev. D71, 074, 003 (2005). doi:10.1103/PhysRevD.71.074003

  103. T. Kitagaki, H. Yuta, S. Tanaka, A. Yamaguchi, K. Abe et al., Charged current exclusive pion production in neutrino deuterium interactions. Phys. Rev. D34, 2554–2565 (1986). doi:10.1103/PhysRevD.34.2554

    ADS  Google Scholar 

  104. G. Radecky, V. Barnes, D. Carmony, A. Garfinkel, M. Derrick et al., Study of single pion production by weak charged currents in low-energy neutrino \(d\) interactions. Phys. Rev. D25, 1161–1173 (1982). doi:10.1103/PhysRevD.25.1161, 10.1103/PhysRevD.26.3297

    Google Scholar 

  105. E. Hernandez, J. Nieves, M. Valverde, M. Vicente Vacas, N-Delta(1232) axial form factors from weak pion production. Phys. Rev. D81, 085, 046 (2010). doi:10.1103/PhysRevD.81.085046

  106. E. Hernández, J. Nieves, M.J.V. Vacas, Single \(\pi \) production in neutrino nucleus scattering. Phys. Rev. D87, 113, 009 (2013). doi:10.1103/PhysRevD.87.113009

  107. K. Graczyk, D. Kielczewska, P. Przewlocki, J. Sobczyk, C(5)**A axial form factor from bubble chamber experiments. Phys. Rev. D80, 093, 001 (2009). doi:10.1103/PhysRevD.80.093001

  108. K.M. Watson, The effect of final state interactions on reaction cross-sections. Phys. Rev. 88, 1163–1171 (1952). doi:10.1103/PhysRev.88.1163

    Article  ADS  MATH  Google Scholar 

  109. J. Nieves, I. Ruiz Simo, M. Vicente Vacas, Two particle-hole excitations in charged current quasielastic antineutrino-nucleus scattering. Phys. Lett. B721, 90–93 (2013). doi:10.1016/j.physletb.2013.03.002

    Google Scholar 

  110. M. Martini, Two particle-two hole excitations in charged current quasielastic neutrino-nucleus interactions. J. Phys. Conf. Ser. 408, 012, 041 (2013)

    Google Scholar 

  111. O. Lalakulich, K. Gallmeister, K. Mosel, Many-body interactions of neutrinos with nuclei—observables. Phys. Rev. C86, 014, 614 (2012). doi:10.1103/PhysRevC.86.014614

  112. J. Amaro, M. Barbaro, J. Caballero, T. Donnelly, C. Williamson, Meson-exchange currents and quasielastic neutrino cross sections in the superscaling approximation model. Phys. Lett. B696, 151–155 (2011). doi:10.1016/j.physletb.2010.12.007

    Article  ADS  Google Scholar 

  113. J. Amaro, M. Barbaro, J. Caballero, T. Donnelly, Meson-exchange currents and quasielastic antineutrino cross sections in the superscaling approximation. Phys. Rev. Lett. 108, 152, 501 (2012). doi:10.1103/PhysRevLett.108.152501

  114. J. Amaro, M. Barbaro, J. Caballero, T. Donnelly, J. Udias, Relativistic analyses of quasielastic neutrino cross sections at MiniBooNE kinematics. Phys. Rev. D84, 033, 004 (2011). doi:10.1103/PhysRevD.84.033004

  115. A. Bodek, H. Budd, M. Christy, Neutrino quasielastic scattering on nuclear targets: parametrizing transverse enhancement (Meson exchange currents). Eur. Phys. J. C71, 1726 (2011). doi:10.1140/epjc/s10052-011-1726-y

    Article  ADS  Google Scholar 

  116. O. Lalakulich, U. Mosel, Energy reconstruction in quasielastic scattering in the MiniBooNE and T2K experiments. Phys. Rev. C86, 054, 606 (2012). doi:10.1103/PhysRevC.86.054606

  117. M. Martini, M. Ericson, G. Chanfray, Neutrino energy reconstruction problems and neutrino oscillations. Phys. Rev. D85, 093, 012 (2012). doi:10.1103/PhysRevD.85.093012

  118. M. Martini, M. Ericson, G. Chanfray, Energy reconstruction effects in neutrino oscillation experiments and implications for the analysis. Phys. Rev. D87, 013, 009 (2013). doi:10.1103/PhysRevD.87.013009

  119. D. Meloni, M. Martini, Revisiting the T2K data using different models for the neutrino-nucleus cross sections. Phys. Lett. B716, 186–192 (2012). doi:10.1016/j.physletb.2012.08.007

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research has been supported by the Spanish Ministerio de Economía y Competitividad and European FEDER funds under the contracts FIS2011-28853-C02-02, FIS2014-51948-C2-1-P, FIS2014-57026-REDT and SEV-2014-0398 (MINECO), by Generalitat Valenciana under contract PROMETEOII/2014/0068 and by the EU HadronPhysics3 project, grant agreement no. 283286.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Nieves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Nieves, J. (2016). Neutrinos in Nuclear Physics: RPA, MEC, 2p2h (Pionic Modes of Excitation in Nuclei). In: García-Ramos, JE., Alonso, C., Andrés, M., Pérez-Bernal, F. (eds) Basic Concepts in Nuclear Physics: Theory, Experiments and Applications. Springer Proceedings in Physics, vol 182. Springer, Cham. https://doi.org/10.1007/978-3-319-21191-6_1

Download citation

Publish with us

Policies and ethics