Skip to main content
  • 2240 Accesses

Abstract

Smart and miniaturized implantable microsystems with diagnostic and therapeutic capabilities are becoming increasingly important for patients suffering from neurological disorders such as epilepsy. Recent developments in microfabrication technology have provided new insights into seizure generation at an unprecedented spatial scale. Based on these findings, designing powerful acquisition systems capable of probing the wide-range spatiotemporal activities within the brain holds a great promise to improve the quality of life of epileptic patients. As a major technological barrier, the high overall data rate of digitized neural signals recorded by dense electrode arrays can drastically increase the power consumption of the wireless transmission module. Consequently, extensive system-level design improvement is needed to meet the requirements of the implantable device, while preserving the high-resolution monitoring capability. In this context, low-power circuit and system design techniques for data compression and seizure detection in multichannel cortical implants are presented. The first fully-integrated circuit that addresses the multichannel compressed-domain feature extraction is proposed, consuming sub-\(\upmu\) W of power within an effective area of \(250\,\upmu \mathrm{m} \times 250\,\upmu \mathrm{m}\) per channel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muller R, Le H-P, Li W, Ledochowitsch P, Gambini S, Bjorninen T, Koralek A, Carmena JM, Maharbiz MM, Alon E et al (2015) A minimally invasive 64-channel wireless μecog implant. IEEE J Solid-State Circuits (JSSC) 4:344–359

    Article  Google Scholar 

  2. Stacey WC, Litt B (2008) Technology insight: neuroengineering and epilepsy-designing devices for seizure control. Nat Clin Pract Neurol 4(4):190–201

    Google Scholar 

  3. Pollo C, Shoaran M, Leblebici Y, Mercanzini A, Dehollain C, Schmid A (2012) The future of intracranial eeg recording in epilepsy: a technological issue. Epileptologie 29:114–119

    Google Scholar 

  4. Talathi SS, Hwang D-U, Spano ML, Simonotto J, Furman MD, Myers SM, Winters JT, Ditto WL, Carney PR (2008) Non-parametric early seizure detection in an animal model of temporal lobe epilepsy. J Neural Eng 5(1):85–98

    Article  MATH  Google Scholar 

  5. Stead M, Bower M, Brinkmann BH, Lee K, Marsh WR, Meyer FB, Litt B, Van Gompel J, Worrell GA (2010) Microseizures and the spatiotemporal scales of human partial epilepsy. Brain 133:2789–2797

    Article  Google Scholar 

  6. Viventi J, Kim D-H, Vigeland L, Frechette ES, Blanco JA, Kim Y-S, Avrin AE, Tiruvadi VR, Hwang S-W, Vanleer AC et al. (2011) Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci 14(12):1599–1605

    Article  Google Scholar 

  7. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  Google Scholar 

  8. Candès EJ (2006) Compressive sampling. In: Proceedings of the international congress of mathematicians, pp 1433–1452

    Google Scholar 

  9. Laska JN, Kirolos S, Duarte MF, Ragheb TS, Baraniuk RG, Massoud Y (2007) Theory and implementation of analog-to-information converter using random demodulation. In: Proceedings of the international symposium on signals, circuits and systems (ISCAS), 2007, pp 1959–1962

    Google Scholar 

  10. Chen F, Chandrakasan AP, Stojanovic VM (2012) Design and analysis of a hardware-efficient compressed sensing architecture for data compression in wireless sensors. IEEE J Solid-State Circuits 47(3):744–756

    Article  MATH  Google Scholar 

  11. Shoaran M, Kamal M, Pollo C, Vandergheynst P, Schmid A (2014) Compact low-power cortical recording architecture for compressive multichannel data acquisition. IEEE Trans Biomed Circuits Syst 8(6):857–870

    Article  Google Scholar 

  12. Shoaran M, Afshari H, Schmid A (2014) A novel compressive sensing architecture for high-density biological signal recording. In: IEEE biomedical circuits and systems conference (BioCAS), pp 13–16

    Google Scholar 

  13. Higgins G, Faul S, McEvoy RP, McGinley B, Glavin M, Marnane WP, Jones E (2010) Eeg compression using jpeg2000: how much loss is too much. In: International conference of the IEEE engineering in medicine and biology society (EMBC), pp 614–617

    Google Scholar 

  14. Rodriguez-Perez A, Ruiz-Amaya J, Delgado-Restituto M, Rodriguez-Vazquez A (2012) A low-power programmable neural spike detection channel with embedded calibration and data compression. IEEE Trans Biomed Circuits Syst 6(2):87–100

    Article  Google Scholar 

  15. Harrison RR, Watkins PT, Kier RJ, Lovejoy RO, Black DJ, Greger B, Solzbacher F (2007) A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE J Solid-State Circuits 42(1):123–133

    Article  MATH  Google Scholar 

  16. Gosselin B, Ayoub AE, Roy J-F, Sawan M, Lepore F, Chaudhuri A, Guitton D (2009) A mixed-signal multichip neural recording interface with bandwidth reduction. IEEE Trans Biomed Circuits Syst 3(3):129–141

    Article  Google Scholar 

  17. Kamboh AM, Oweiss KG, Mason AJ (2009) Resource constrained vlsi architecture for implantable neural data compression systems. In: IEEE international symposium on circuits and systems (ISCAS), pp 1481–1484

    Google Scholar 

  18. Olsson RH, Wise KD (2005) A three-dimensional neural recording microsystem with implantable data compression circuitry. IEEE J Solid-State Circuits 40(12):2796–2804

    Article  MATH  Google Scholar 

  19. Shoaran M, Pollo C, Schindler K, Schmid A (2015) A fully-integrated ic with 0.85-\(\upmu\) W/channel consumption for epileptic ieeg detection. IEEE Trans Circuits Syst II Express Briefs 62(2):114–118

    Article  Google Scholar 

  20. Verma N, Shoeb A, Bohorquez J, Dawson J, Guttag J, Chandrakasan AP (2010) A micro-power eeg acquisition soc with integrated feature extraction processor for a chronic seizure detection system. IEEE J Solid-State Circuits 45(4):804–816

    Article  Google Scholar 

  21. Yoo J, Yan L, El-Damak D, Altaf MAB, Shoeb AH, Chandrakasan AP (2013) An 8-channel scalable eeg acquisition soc with patient-specific seizure classification and recording processor. IEEE J Solid-State Circuits 48(1):214–228

    Article  Google Scholar 

  22. Davenport MA, Boufounos PT, Wakin MB, Baraniuk RG (2010) Signal processing with compressive measurements. IEEE J Sel Top Sign Proces 4(2):445–460

    Article  MATH  Google Scholar 

  23. Logesparan L, Casson AJ, Rodriguez-Villegas E (2012) Optimal features for online seizure detection. Med Biol Eng Comput 50(7):659–669

    Article  Google Scholar 

  24. Chen W-M, Chiueh H, Chen T-J, Ho C-L, Jeng C, Chang S-T, Ker M-D, Lin C-Y, Huang Y-C, Chou C-W et al. (2013) A fully integrated 8-channel closed-loop neural-prosthetic soc for real-time epileptic seizure control. In: 2013 IEEE international solid-state circuits conference digest of technical papers (ISSCC), pp 286–287

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shoaran, M., Schmid, A. (2016). A Power-Efficient Compressive Sensing Platform for Cortical Implants. In: Makinwa, K., Baschirotto, A., Harpe, P. (eds) Efficient Sensor Interfaces, Advanced Amplifiers and Low Power RF Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-21185-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21185-5_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21184-8

  • Online ISBN: 978-3-319-21185-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics