Skip to main content

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 2027 Accesses

Abstract

Recent advances in cellular engineering techniques coupled with modern chimeric antigen receptors (CARs) now permit the efficient targeting and killing of malignant cells using patients’ own T cells. Freedom from MHC restriction by relying most commonly on single chain variable fragments of monoclonal antibodies for antigen recognition rather than T cell receptors expands the list of potential targets. Unlike small molecule inhibitors, the targets of CAR T cells are not required to play a critical function in the tumor cell. CAR targets must be extracellular and ideally should have limited expression on normal, vital tissues. By incorporating primary and co-stimulatory domains, CAR T cells possess a substantial proliferative capacity allowing for small cell doses, which reduces the manufacturing burden. This therapeutic approach allows a potent yet customized in vivo response. The potential of CAR T cells to contribute to the overall treatment of cancer is exemplified by the impressive clinical responses with predominantly reversible toxicities seen in early phase clinical trials targeting the B-cell antigen, CD19, in B-lineage hematologic malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choudhury A et al (2006) Clinical results of vaccine therapy for cancer: learning from history for improving the future. Adv Cancer Res 95:147–202

    Article  CAS  PubMed  Google Scholar 

  2. Mocellin S, Pilati P, Nitti D (2009) Peptide-based anticancer vaccines: recent advances and future perspectives. Curr Med Chem 16(36):4779–4796

    Article  CAS  PubMed  Google Scholar 

  3. Robbins PF et al (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29(7):917–924

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chodon T et al (2014) Adoptive transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma. Clin Cancer Res 20(9):2457–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Morgan RA et al (2013) Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 36(2):133–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gross G, Waks T, Eshhar Z (1989) Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A 86(24):10024–10028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Eshhar Z, Waks T, Gross G (2014) The emergence of T-bodies/CAR T cells. Cancer J 20(2):123–126

    Article  CAS  PubMed  Google Scholar 

  8. Hwu P et al (1995) In vivo antitumor activity of T cells redirected with chimeric antibody/T-cell receptor genes. Cancer Res 55(15):3369–3373

    CAS  PubMed  Google Scholar 

  9. Pule MA et al (2008) Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 14(11):1264–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Louis CU et al (2011) Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 118(23):6050–6056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pallasch CP et al (2014) Sensitizing protective tumor microenvironments to antibody-mediated therapy. Cell 156(3):590–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gribben JG et al (1997) Biologic response modifiers in acute lymphoblastic leukemia. Leukemia 11(Suppl 4):S31–S33

    PubMed  Google Scholar 

  13. Vinay DS, Kwon BS (1998) Role of 4-1BB in immune responses. Semin Immunol 10(6):481–489

    Article  CAS  PubMed  Google Scholar 

  14. Croft M (2003) Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat Rev Immunol 3(8):609–620

    Article  CAS  PubMed  Google Scholar 

  15. Watts TH (2005) TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol 23:23–68

    Article  CAS  PubMed  Google Scholar 

  16. Haso W et al (2013) Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood 121(7):1165–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hombach AA, Rappl G, Abken H (2013) Arming cytokine-induced killer cells with chimeric antigen receptors: CD28 outperforms combined CD28-OX40 “super-stimulation”. Mol Ther 21(12):2268–2277

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Morgan RA et al (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18(4):843–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Orentas RJ et al (2012) Identification of cell surface proteins as potential immunotherapy targets in 12 pediatric cancers. Front Oncol 2:194

    PubMed  PubMed Central  Google Scholar 

  20. Bonini C et al (1997) HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276(5319):1719–1724

    Article  CAS  PubMed  Google Scholar 

  21. Introna M et al (2000) Genetic modification of human T cells with CD20: a strategy to purify and lyse transduced cells with anti-CD20 antibodies. Hum Gene Ther 11(4):611–620

    Article  CAS  PubMed  Google Scholar 

  22. Straathof KC et al (2005) An inducible caspase 9 safety switch for T-cell therapy. Blood 105(11):4247–4254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Iuliucci JD et al (2001) Intravenous safety and pharmacokinetics of a novel dimerizer drug, AP1903, in healthy volunteers. J Clin Pharmacol 41(8):870–879

    Article  CAS  PubMed  Google Scholar 

  24. Mardiros A et al (2013) T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood 122(18):3138–3148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Di Stasi A et al (2011) Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 365(18):1673–1683

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ramos CA et al (2010) An inducible caspase 9 suicide gene to improve the safety of mesenchymal stromal cell therapies. Stem Cells 28(6):1107–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Orentas RJ, Lee DW, Mackall C (2012) Immunotherapy targets in pediatric cancer. Front Oncol 2:3

    PubMed  PubMed Central  Google Scholar 

  28. Gattenlohner S et al (2006) Rhabdomyosarcoma lysis by T cells expressing a human autoantibody-based chimeric receptor targeting the fetal acetylcholine receptor. Cancer Res 66(1):24–28

    Article  PubMed  Google Scholar 

  29. Krebs S et al (2014) T cells redirected to interleukin-13Ralpha2 with interleukin-13 mutein-chimeric antigen receptors have anti-glioma activity but also recognize interleukin-13Ralpha1. Cytotherapy 16(8):1121–31

    Google Scholar 

  30. Sampson JH et al (2014) EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss. Clin Cancer Res 20(4):972–984

    Article  CAS  PubMed  Google Scholar 

  31. Jensen MC et al (2010) Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol Blood Marrow Transplant 16(9):1245–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hackett PB et al (2013) Evaluating risks of insertional mutagenesis by DNA transposons in gene therapy. Transl Res 161(4):265–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hackett PB, Largaespada DA, Cooper LJ (2010) A transposon and transposase system for human application. Mol Ther 18(4):674–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fry TJ, Mackall CL (2013) T-cell adoptive immunotherapy for acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program 2013:348–353

    PubMed  Google Scholar 

  35. Hacein-Bey-Abina S et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302(5644):415–419

    Article  CAS  PubMed  Google Scholar 

  36. Zhang L, Thrasher AJ, Gaspar HB (2013) Current progress on gene therapy for primary immunodeficiencies. Gene Ther 20(10):963–969

    Article  CAS  PubMed  Google Scholar 

  37. Matrai J, Chuah MK, VandenDriessche T (2010) Recent advances in lentiviral vector development and applications. Mol Ther 18(3):477–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, Fry TJ, Orentas R, Sabatino M, Shah NN, Steinberg SM, Stroncek D, Tschernia N, Yuan C, Zhang H, Zhang L, Rosenberg SA, Wayne AS, Mackall CL (2015) T Cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385(9967):517–528

    Article  CAS  PubMed  Google Scholar 

  39. Tumaini B et al (2013) Simplified process for the production of anti-CD19-CAR-engineered T cells. Cytotherapy 15(11):1406–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cruz CR et al (2013) Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood 122(17):2965–2973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Terakura S et al (2012) Generation of CD19-chimeric antigen receptor modified CD8+ T cells derived from virus-specific central memory T cells. Blood 119(1):72–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Grupp SA et al (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368(16):1509–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kochenderfer JN et al (2013) Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood 122(25):4129–4139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Porter DL et al (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365(8):725–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Davila ML et al (2014) Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 6(224):224ra25

    Google Scholar 

  46. Wang X et al (2012) Phenotypic and functional attributes of lentivirus-modified CD19-specific human CD8+ central memory T cells manufactured at clinical scale. J Immunother 35(9):689–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lugli E et al (2013) Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cells. Nat Protoc 8(1):33–42

    Article  CAS  PubMed  Google Scholar 

  48. Laurent J et al (2010) Impact of 3 different short-term chemotherapy regimens on lymphocyte-depletion and reconstitution in melanoma patients. J Immunother 33(7):723–734

    Article  CAS  PubMed  Google Scholar 

  49. Cui Y et al (2009) Harnessing the physiology of lymphopenia to support adoptive immunotherapy in lymphoreplete hosts. Blood 114(18):3831–3840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wrzesinski C et al (2010) Increased intensity lymphodepletion enhances tumor treatment efficacy of adoptively transferred tumor-specific T cells. J Immunother 33(1):1–7

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lee DW et al (2014) How I treat: current concepts in the diagnosis and management of cytokine release syndrome. Blood 124:188–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brentjens R et al (2010) Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther 18(4):666–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carroll J (2014) Two deaths force MSK to hit the brakes on engineered T cell cancer study, in FierceBiotech (http://www.fiercebiotech.com/story/memorial-sloan-kettering-hits-brakes-engineered-t-cell-cancer-study/2014-04-06)

  54. Wilkie S et al (2012) Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J Clin Immunol 32(5):1059–1070

    Article  CAS  PubMed  Google Scholar 

  55. Lanitis E et al (2013) Chimeric antigen receptor T Cells with dissociated signaling domains exhibit focused antitumor activity with reduced potential for toxicity in vivo. Cancer Immunol Res 1(1):43–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Beatty GL et al (2014) Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res 2(2):112–120

    Article  CAS  PubMed  Google Scholar 

  57. Maus MV et al (2013) T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol Res 1(1):26–31

    Article  CAS  PubMed Central  Google Scholar 

  58. Hassan R, Bera T, Pastan I (2004) Mesothelin: a new target for immunotherapy. Clin Cancer Res 10(12 Pt 1):3937–3942

    Article  CAS  PubMed  Google Scholar 

  59. Dotti G et al (2014) Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev 257(1):107–126

    Article  CAS  PubMed  Google Scholar 

  60. Perna SK et al (2014) Interleukin-7 mediates selective expansion of tumor-redirected cytotoxic T lymphocytes (CTLs) without enhancement of regulatory T-cell inhibition. Clin Cancer Res 20(1):131–139

    Article  CAS  PubMed  Google Scholar 

  61. Chmielewski M, Abken H (2012) CAR T cells transform to trucks: chimeric antigen receptor-redirected T cells engineered to deliver inducible IL-12 modulate the tumour stroma to combat cancer. Cancer Immunol Immunother 61(8):1269–1277

    Article  CAS  PubMed  Google Scholar 

  62. Quintarelli C et al (2007) Co-expression of cytokine and suicide genes to enhance the activity and safety of tumor-specific cytotoxic T lymphocytes. Blood 110(8):2793–2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hoyos V et al (2010) Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia 24(6):1160–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Park JR et al (2007) Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther 15(4):825–833

    CAS  PubMed  Google Scholar 

  65. Lamers CH et al (2006) Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 24(13):e20–e22

    Article  PubMed  Google Scholar 

  66. Lamers CH et al (2013) Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther 21(4):904–912

    Article  CAS  PubMed  Google Scholar 

  67. Craddock JA et al (2010) Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J Immunother 33(8):780–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. John LB et al (2013) Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res 19(20):5636–5646

    Article  CAS  PubMed  Google Scholar 

  69. Prosser ME et al (2012) Tumor PD-L1 co-stimulates primary human CD8(+) cytotoxic T cells modified to express a PD1:CD28 chimeric receptor. Mol Immunol 51(3–4):263–272

    Article  CAS  PubMed  Google Scholar 

  70. Ankri C et al (2013) Human T cells engineered to express a programmed death 1/28 costimulatory retargeting molecule display enhanced antitumor activity. J Immunol 191(8):4121–4129

    Article  CAS  PubMed  Google Scholar 

  71. Topp MS et al (2011) Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol 29(18):2493–2498

    Article  CAS  PubMed  Google Scholar 

  72. Urbanska K et al (2012) A universal strategy for adoptive immunotherapy of cancer through use of a novel T-cell antigen receptor. Cancer Res 72(7):1844–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kochenderfer JN et al (2012) B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119(12):2709–2720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lee, D.W., Wayne, A.S. (2015). Chimeric Antigen Receptor (CAR) T Cells. In: Ascierto, P., Stroncek, D., Wang, E. (eds) Developments in T Cell Based Cancer Immunotherapies. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-21167-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21167-1_12

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-21166-4

  • Online ISBN: 978-3-319-21167-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics