Reconfigurable Petri Nets with Transition Priorities and Inhibitor Arcs

  • Julia PadbergEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9151)


In this paper we introduce additional control structures for reconfigurable Petri nets. The main contributions are inhibitor arcs and transition priorities for reconfigurable Petri nets. The first ensure that a marking can inhibit the firing of a transition. Inhibitor arcs allow a transition to fire only if the adjacent place is empty. Transition priorities are given by an order of transitions and restrict the firing as well. A transition may fire only if it has the highest priority of all enabled transitions. Both concepts are compatible with reconfigurable Petri nets. In this paper we prove that place/transitions nets with inhibitor arcs and with transition priorities yield \(\mathcal {M}\)-adhesive categories. Hence, we obtain the well-known results for \(\mathcal {M}\)-adhesive categories. Moreover, we state the extension of our results to other types of Petri nets.

We illustrate the new concepts within an ongoing case study concerning travel agencies. This study deals with the organisation of processes that are constantly suspended by others. The main focus of the case study is to investigate the possibilities of small and medium travel agencies to provide a continuous service for their customers while travelling.


Reconfigurable Petri nets Category of partially ordered sets Inhibitor arcs Transition priorities \(\mathcal {M}\)-adhesive transformation system 


  1. 1.
    Andries, M., Engels, G., Habel, A., Hoffmann, B., Kreowski, H., Kuske, S., Plump, D., Schürr, A., Taentzer, G.: Graph transformation for specification and programming. Sci. Comput. Program. 34(1), 1–54 (1999)CrossRefGoogle Scholar
  2. 2.
    Best, E., Koutny, M.: Petri net semantics of priority systems. Theor. Comput. Sci. 96(1), 175–215 (1992)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bottoni, P., Hoffmann, K., Parisi-Presicce, F., Taentzer, G.: High-level replacement units and their termination properties. J. Vis. Lang. Comput. 16(6), 485–507 (2005)CrossRefGoogle Scholar
  4. 4.
    Busi, N.: Analysis issues in petri nets with inhibitor arcs. Theor. Comput. Sci. 275(1–2), 127–177 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Codara, P.: A theory of partitions of partially ordered sets. Ph.D. thesis, Universita degli Studi die Milano (2007)Google Scholar
  6. 6.
    Ede, M., Hoffmann, K., Oelker, G., Padberg, J.: Reconnet: a tool for modeling and simulating with reconfigurable place/transition nets. Electronic Communications of the EASST 54, 10 (2012)Google Scholar
  7. 7.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. EATCS Monographs in TCS. Springer, Heidelberg (2006)Google Scholar
  8. 8.
    Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.: M-Adhesive transformation systems with nested application conditions. part 2: embedding, critical pairs and local confluence. Fundam. Inform. 118(1–2), 35–63 (2012)MathSciNetGoogle Scholar
  9. 9.
    Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.: \({\cal M}\)-adhesive transformation systems with nested application conditions. part 1: parallelism, concurrency and amalgamation. Mathematical Structures in Computer Science 24(4), 48 (2014)Google Scholar
  10. 10.
    Ehrig, H., Golas, U., Hermann, F.: Categorical frameworks for graph transformation and HLR systems based on the DPO approach. Bull. EATCS 102, 111–121 (2010)MathSciNetGoogle Scholar
  11. 11.
    Ehrig, H., Hoffmann, K., Padberg, J., Prange, U., Ermel, C.: Independence of net transformations and token firing in reconfigurable place/transition systems. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 104–123. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  12. 12.
    Ehrig, H., Padberg, J.: Graph grammars and petri net transformations. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 496–536. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  13. 13.
    Ermler, M., Kreowski, H.-J., Kuske, S., von Totth, C.: From graph transformation units via minisat to In: Schürr, A., Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233, pp. 153–168. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  14. 14.
    Hölscher, K., Klempien-Hinrichs, R., Knirsch, P.: Undecidable control conditions in graph transformation units. Electron. Notes Theor. Comput. Sci. 195, 95–111 (2008)CrossRefGoogle Scholar
  15. 15.
    Janicki, R., Koutny, M.: Semantics of inhibitor nets. Inf. Comput. 123(1), 1–16 (1995)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kahloul, L., Chaoui, A., Djouani, K.: Modeling and analysis of reconfigurable systems using flexible Petri nets. In: 4th IEEE International Symposium on Theoretical Aspects of Software Engineering, pp. 107–116 (2010)Google Scholar
  17. 17.
    Kreowski, H.-J., Kuske, S., Rozenberg, G.: Graph transformation units – an overview. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 57–75. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  18. 18.
    Lack, S., Sobocinski, P.: Adhesive and quasiadhesive categories. ITA 39(3), 511–545 (2005)MathSciNetGoogle Scholar
  19. 19.
    Lambers, L.: Certifying rule-based models using graph transformation. Ph.D. thesis, Berlin Institute of Technology (2009)Google Scholar
  20. 20.
    Llorens, M., Oliver, J.: Structural and dynamic changes in concurrent systems: reconfigurable Petri nets. IEEE Trans. Comput. 53(9), 1147–1158 (2004)CrossRefGoogle Scholar
  21. 21.
    Padberg, J.: Abstract Petri nets: a uniform approach and rule-based refinement. Ph.D. thesis, Technical University Berlin, Shaker Verlag (1996)Google Scholar
  22. 22.
    Padberg, J.: Abstract interleaving semantics for reconfigurable Petri nets. Electron. Commun. EASST 51, 1–14 (2012)Google Scholar
  23. 23.
    Padberg, J.: Reconfigurable decorated PT nets with inhibitor arcs and transition priorities. CoRR abs/1409.6856 (2014).
  24. 24.
    Padberg, J., Hoffmann, K.: A survey of control structures for reconfigurable Petri nets. J. Comput. Commun. 3(2), 20–28 (2015)CrossRefGoogle Scholar
  25. 25.
    Prange, U.: Towards algebraic high-level systems as weak adhesive HLR categories. Electron. Notes Theor. Comput. Sci. 203(6), 67–88 (2008)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Prange, U., Ehrig, H., Hoffmann, K., Padberg, J.: Transformations in reconfigurable place/transition systems. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 96–113. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  27. 27.
    Prange, U., Ehrig, H., Lambers, L.: Construction and properties of adhesive and weak adhesive high-level replacement categories. Appl. Categorical Struct. 16(3), 365–388 (2008)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Rein, A., Prange, U., Lambers, L., Hoffmann, K., Padberg, J.: Negative application conditions for reconfigurable place/transition systems. Electron. Commun. EASST 10, 1–14 (2008)CrossRefGoogle Scholar
  29. 29.
    Reiseverband, D.: Fakten und Zahlen 2013 zum deutschen Reisemarkt (2013)., last visited: 03/24/2015 15:54
  30. 30.
    Werner, M., Popova-Zeugmann, L., Richling, J.: A method to prove non-reachability in priority duration Petri nets. Fundam. Inform. 61(3–4), 351–368 (2004)MathSciNetGoogle Scholar
  31. 31. The global travel ecosystem: a more personalized traveler journey (2014)., last visited: 03/17/2015 12:58

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Hamburg University of Applied SciencesHamburgGermany

Personalised recommendations