Towards Local Confluence Analysis for Amalgamated Graph Transformation

  • Gabriele TaentzerEmail author
  • Ulrike Golas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9151)


Amalgamated graph transformation allows to define schemes of rules coinciding in common core activities and differing over additional parallel independent activities. Consequently, a rule scheme is specified by a kernel rule and a set of extending multi-rules forming an interaction scheme. Amalgamated transformations have been increasingly used in various modeling contexts.

Critical Pair Analysis (CPA) can be used to show local confluence of graph transformation systems. It is an open challenge to lift the CPA to amalgamated graph transformation systems, especially since infinite many pairs of amalgamated rules occur in general. As a first step towards an efficient local confluence analysis of amalgamated graph transformation systems, we show that the analysis of a finite set of critical pairs suffices to prove local confluence.


Amalgamated graph transformation Parallel independence Critical pair analysis 



We thank Yngve Lamo and Kristopher Born for their valuable comments to this paper.


  1. 1.
    The Fujaba tool suite.
  2. 2.
    Biermann, E., Ehrig, H., Ermel, C., Golas, U., Taentzer, G.: Parallel independence of amalgamated graph transformations applied to model transformation. In: Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel, B. (eds.) Nagl Festschrift. LNCS, vol. 5765, pp. 121–140. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  3. 3.
    Biermann, E., Ermel, C., Taentzer, G.: Lifting parallel graph transformation concepts to model transformation based on the eclipse modeling framework. ECEASST 26, 19 (2010)Google Scholar
  4. 4.
    Biermann, E., Ermel, C., Taentzer, G.: Formal foundation of consistent emf model transformations by algebraic graph transformation. Softw. Syst. Model. 11(2), 227–250 (2012)CrossRefGoogle Scholar
  5. 5.
    Drewes, F., Hoffmann, B., Janssens, D., Minas, M.: Adaptive star grammars and their languages. Theor. Comput. Sci. 411(34–36), 3090–3109 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2006) zbMATHGoogle Scholar
  7. 7.
    Golas, U., Biermann, E., Ehrig, H., Ermel, C.: A visual interpreter semantics for statecharts based on amalgamated graph transformation. ECEASST 39, 1–24 (2011)Google Scholar
  8. 8.
    Golas, U.: Analysis and correctness of algebraic graph and model transformations. Ph.D. thesis, Berlin Institute of Technology (2011)Google Scholar
  9. 9.
    Golas, U., Habel, A., Ehrig, H.: Multi-amalgamation of rules with application conditions in \(\cal M\)-adhesive categories. Math. Struct. Comput. Sci. 24(4), 51 (2014)CrossRefGoogle Scholar
  10. 10.
    Grønmo, R., Krogdahl, S., Møller-Pedersen, B.: A collection operator for graph transformation. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 67–82. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  11. 11.
    Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems relative to nested conditions. Math. Struct. Comput. Sci. 19(2), 245–296 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Mantz, F., Taentzer, G., Lamo, Y., Wolter, U.: Co-evolving meta-models and their instance models: a formal approach based on graph transformation. Sci. Comput. Program. 104, 2–43 (2015)CrossRefGoogle Scholar
  13. 13.
    Plump, D.: Critical Pairs in Term Graph Rewriting. In: Prívara, I., Rovan, B., Ruzička, P. (eds.) MFCS. LNCS, vol. 841, pp. 556–566. Springer, Heidelberg (1994) Google Scholar
  14. 14.
    Plump, D.: On termination of graph rewriting. In: Nagl, M. (ed.) GTCS. LNCS, vol. 1017, pp. 88–100. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  15. 15.
    Schürr, A., Winter, A., Zündorf, A.: The PROGRES approach: language and environment. In: Handbook of Graph Grammars and Computing by Graph Transformation, pp. 487–550. World Scientific (1999)Google Scholar
  16. 16.
    Taentzer, G., Golas, U.: Towards Local Confluence Analysis for Amalgamated Graph Transformation: Long Version. Technical report, pp. 15–29, Zuse Institute Berlin (2015).

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Philipps-Universität MarburgMarburgGermany
  2. 2.Humboldt-Universität Zu Berlin and Zuse Institut BerlinBerlinGermany

Personalised recommendations