Predictive Top-Down Parsing for Hyperedge Replacement Grammars

  • Frank Drewes
  • Berthold HoffmannEmail author
  • Mark Minas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9151)


Graph languages defined by hyperedge replacement grammars can be NP-complete. We invent predictive top-down (PTD) parsers for a subclass of these grammars, similar to recursive descent parsers for string languages. The focus of this paper lies on the grammar analysis that computes neighbor edges of nonterminals, in analogy to the first and follow symbols used in SLL(1) parsing. The analysis checks whether a grammar is PTD parsable and yields all information for generating a parser that runs in linear space and quadratic time.


Input Graph Graph Grammar Neighborhood Vector Terminal Edge Attached Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aalbersberg, I., Ehrenfeucht, A., Rozenberg, G.: On the membership problem for regular DNLC grammars. Discrete Appl. Math. 13, 79–85 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chiang, D., Andreas, J., Bauer, D., Hermann, K. M., Jones, B., Knight, K.: Parsing graphs with hyperedge replacement grammars. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, Sofia, Bulgaria. Long Papers, vol. 1, pp. 924–932, August 2013Google Scholar
  3. 3.
    Costagliola, G., De Lucia, A., Orefice, S., Tortora, G.: A parsing methodology for the implementation of visual systems. IEEE Trans. Softw. Eng. 23(12), 777–799 (1997)CrossRefGoogle Scholar
  4. 4.
    Drewes, F.: Recognising \(k\)-connected hypergraphs in cubic time. Theor. Comput. Sci. 109, 83–122 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Drewes, F., Hoffmann, B.: Contextual hyperedge replacement. Acta Informatica, 31 (2015, accepted for publication). doi:10.1007/s00236-015-0223-4Google Scholar
  6. 6.
    Franck, R.: A class of linearly parsable graph grammars. Acta Informatica 10(2), 175–201 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fürst, L., Mernik, M., Mahnič, V.: Improving the graph grammar parser of Rekers and Schürr. IET Softw. 5(2), 246–261 (2011)CrossRefGoogle Scholar
  8. 8.
    Habel, A. (ed.): Hyperedge Replacement: Grammars and Languages. LNCS, vol. 643. Springer, Heidelberg (1992) zbMATHGoogle Scholar
  9. 9.
    Hoffmann, B., Minas, M.: Defining models - meta models versus graph grammars. In: Proceedings of the 6th Workshop on Graph Transformation and Visual Modeling Techniques (GT-VMT 2010), Electronic Communications of the EASST, 29, Paphos, Cyprus (2010)Google Scholar
  10. 10.
    Kaul, M.: Practical applications of precedence graph grammars. In: Ehrig, H., Nagl, M., Rozenberg, G., Rosenfeld, A. (eds.) Graph-Grammars and Their Application to Computer Science. LNCS, vol. 291, pp. 326–342. Springer, Heidelberg (1986) CrossRefGoogle Scholar
  11. 11.
    Lautemann, C.: The complexity of graph languages generated by hyperedge replacement. Acta Informatica 27, 399–421 (1990)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lewis II, P.M., Stearns, R.E.: Syntax-directed transduction. JACM 15(3), 465–488 (1968)CrossRefzbMATHGoogle Scholar
  13. 13.
    Ludwigs, H.J.: A LR-like analyzer algorithm for graphs. In: Wilhelm, R. (ed.) GI - 10. Jahrestagung: Saarbrücken, 30. September - 2. Oktober 1980. Informatik-Fachberichte, vol. 33, pp. 321–335. Springer, Heidelberg (1980) Google Scholar
  14. 14.
    Minas, M.: Diagram editing with hypergraph parser support. In: Proceedings of 1997 IEEE Symposium on Visual Languages (VL 1997), Capri, Italy, pp. 226–233 (1997)Google Scholar
  15. 15.
    Parikh, R.J.: On context-free languages. JACM 13(4), 570–581 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Rekers, J., Schürr, A.: Defining and parsing visual languages with layered graph grammars. J. Vis. Lang. Comput. 8(1), 27–55 (1997)CrossRefGoogle Scholar
  17. 17.
    Vogler, W.: Recognizing edge replacement graph languages in cubic time. In: Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Grammars and Their Application to Computer Science. LNCS, vol. 532, pp. 676–687. Springer, Heidelberg (1991) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Umeå UniversitetUmeåSweden
  2. 2.DFKI Bremen and Universität BremenBremenGermany
  3. 3.Universität der Bundeswehr MünchenNeubibergGermany

Personalised recommendations