Uncover: Using Coverability Analysis for Verifying Graph Transformation Systems

  • Jan StückrathEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9151)


Uncover is a tool for high level verification of distributed or concurrent systems. It uses graphs and graph transformation rules to model these systems in a natural way. Errors in such a system are modelled by upward-closed sets for which two orders are provided, the subgraph and the minor ordering. We can then exploit the theory of well-structured transition systems to obtain exact or approximating decidability results (depending on the order and system) for the question whether an error can occur or not. For this framework we also introduced an extension of classical graph transformation which is capable of modelling broadcast protocols.


Graph Transformation Initial Error Initial Graph Edge Deletion Graph Transformation Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abdulla, P.A., Bouajjani, A., Cederberg, J., Haziza, F., Rezine, A.: Monotonic abstraction for programs with dynamic memory heaps. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 341–354. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  2. 2.
    Abdulla, P.A., C̆erāns, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems for infinite-state systems. In: Proceedings of LICS 1996, pp. 313–321. IEEE (1996)Google Scholar
  3. 3.
  4. 4.
    Bansal, K., Koskinen, E., Wies, T., Zufferey, D.: Structural counter abstraction. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 62–77. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  5. 5.
    Bertrand, N., Delzanno, G., König, B., Sangnier, A., Stückrath, J.: On the decidability status of reachability and coverability in graph transformation systems. In: Proceedings of RTA 2012, vol. 15 of LIPIcs, pp. 101–116 (2012)Google Scholar
  6. 6.
    Delzanno, G., Stückrath, J.: Parameterized verification of graph transformation systems with whole neighbourhood operations. In: Ouaknine, J., Potapov, I., Worrell, J. (eds.) RP 2014. LNCS, vol. 8762, pp. 72–84. Springer, Heidelberg (2014) Google Scholar
  7. 7.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!. Theor. Comput. Sci. 256(1–2), 63–92 (2001)MathSciNetCrossRefGoogle Scholar
  8. 8.
  9. 9.
    Graphviz website.
  10. 10.
  11. 11.
    Holt, R.C., Schürr, A., Sim, S.E., Winter, A.: GXL.
  12. 12.
    Joshi, S., König, B.: Applying the graph minor theorem to the verification of graph transformation systems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 214–226. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  13. 13.
    König, B., Stückrath, J.: Well-structured graph transformation systems with negative application conditions. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 81–95. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  14. 14.
    König, B., Stückrath, J.: A general framework for well-structured graph transformation systems. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 467–481. Springer, Heidelberg (2014) Google Scholar
  15. 15.
    Meyer, R.: Structural stationarity in the \(\pi \)-calculus. Ph.D. thesis, Carl-von-Ossietzky-Universität Oldenburg (2009)Google Scholar
  16. 16.
    Robertson, N., Seymour, P.: Graph minors XXIII. Nash-Williams’ immersion conjecture. J. Comb. Theory, Ser. B 100, 181–205 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformation: Volume 1: Foundations. World Scientific Publishing, River Edge (1997) Google Scholar
  18. 18.
    Saksena, M., Wibling, O., Jonsson, B.: Graph grammar modeling and verification of ad hoc routing protocols. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 18–32. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  19. 19.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Universität Duisburg-EssenEssenGermany

Personalised recommendations