Advertisement

Translating Essential OCL Invariants to Nested Graph Constraints Focusing on Set Operations

  • Hendrik RadkeEmail author
  • Thorsten Arendt
  • Jan Steffen Becker
  • Annegret Habel
  • Gabriele Taentzer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9151)

Abstract

Domain-specific modeling languages (DSMLs) are usually defined by meta-modeling where invariants are defined in the Object Constraint Language (OCL). This approach is purely declarative in the sense that instance construction is not incorporated but has to added. In contrast, graph grammars incorporate the stepwise construction of instances by applying transformation rules. Establishing a formal relation between meta-modeling and graph transformation opens up the possibility to integrate techniques of both fields. This integration can be advantageously used for optimizing DSML definition. Generally, a meta-model is translated to a type graph with a set of nested graph constraints. In this paper, we consider the translation of Essential OCL invariants to nested graph constraints. Building up on a translation of Core OCL invariants, we focus here on the translation of set operations. The main idea is to use the characteristic function of sets to translate set operations to corresponding Boolean operations. We show that a model satisfies an Essential OCL invariant iff its corresponding instance graph satisfies the corresponding nested graph constraint.

Keywords

Meta modeling Essential OCL Graph constraints Set operations 

Notes

Acknowledgement

We are grateful to the anonymous referees for their helpful comments on a draft version of this paper.

References

  1. 1.
    OMG: Object Constraint Language. http://www.omg.org/spec/OCL/
  2. 2.
    Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal verification of UML/OCL models using constraint programming. In: 22nd IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 547–548 (2007)Google Scholar
  3. 3.
    Ehrig, K., Küster, J.M., Taentzer, G.: Generating instance models from meta models. Softw. Syst. Model. 8(4), 479–500 (2009)CrossRefGoogle Scholar
  4. 4.
    Kehrer, T., Kelter, U., Taentzer, G.: Consistency-preserving edit scripts in model versioning. In: Denney, E., Bultan, T., Zeller, A. (eds.) 2013 28th IEEE/ACM International Conference on Automated Software Engineering, ASE 2013, Silicon Valley, CA, USA, 11–15 November 2013, pp. 191–201. IEEE (2013)Google Scholar
  5. 5.
    Bardohl, R., Minas, M., Schürr, A., Taentzer, G.: Application of Graph Transformation to Visual Languages. In: Handbook of Graph Grammars and Computing by Graph Transformation. Vol. 2, pp. 105–180. World Scientific (1999)Google Scholar
  6. 6.
    Kuhlmann, M., Gogolla, M.: From UML and OCL to relational logic and back. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 415–431. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  7. 7.
    Jackson, D.: Alloy Analyzer website (2012). http://alloy.mit.edu/
  8. 8.
    Arendt, T., Habel, A., Radke, H., Taentzer, G.: From core OCL invariants to nested graph constraints. In: Giese, H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 97–112. Springer, Heidelberg (2014) Google Scholar
  9. 9.
    Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems relative to nested conditions. Math. Struct. Comput. Sci. 19, 245–296 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bergmann, G.: Translating OCL to graph patterns. In: Dingel, J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp. 670–686. Springer, Heidelberg (2014) Google Scholar
  11. 11.
    OMG: Meta Object Facility. http://www.omg.org/spec/MOF/
  12. 12.
    Radke, H., Arendt, T., Becker, J.S., Habel, A., Taentzer, G.: Translating Essential OCL Invariants to Nested Graph Constraints Focusing on Set Operations: Long version (2015). http://www.uni-marburg.de/fb12/forschung/berichte/berichteinformtk/pdfbi/bi2015-01.pdf
  13. 13.
    Richters, M.: A Precise Approach to Validating UML Models and OCL Constraints. Ph.D. thesis, Universität Bremen, Logos Verlag, Berlin (2002)Google Scholar
  14. 14.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamental theory of typed attributed graph transformation based on adhesive HLR categories. fundamenta Informaticae 74(1), 31–61 (2006)MathSciNetGoogle Scholar
  15. 15.
    Orejas, F.: Symbolic graphs for attributed graph constraints. J. Symb. Comput. 46(3), 294–315 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2006) Google Scholar
  17. 17.
    Rensink, A.: Representing first-order logic using graphs. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  18. 18.
    Habel, A., Pennemann, K.-H.: Nested constraints and application conditions for high-level structures. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg, G., Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling. LNCS, vol. 3393, pp. 293–308. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  19. 19.
    Poskitt, C.M., Plump, D.: Hoare-style verification of graph programs. Fundamenta Informaticae 118(1–2), 135–175 (2012)MathSciNetGoogle Scholar
  20. 20.
    Pennemann, K.H.: Development of Correct Graph Transformation Systems. Ph.D. thesis, Universität Oldenburg (2009)Google Scholar
  21. 21.
    Lambers, L., Orejas, F.: Tableau-based reasoning for graph properties. In: Giese, H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 17–32. Springer, Heidelberg (2014) Google Scholar
  22. 22.
    Richa, E., Borde, E., Pautet, L., Bordin, M., Ruiz, J.F.: Towards testing model transformation chains using precondition construction in algebraic graph transformation. In: AMT 2014-Analysis of Model Transformations Workshop Proceedings, pp. 34–43 (2014)Google Scholar
  23. 23.
    Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced concepts and tools for in-place EMF model transformations. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 121–135. Springer, Heidelberg (2010) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hendrik Radke
    • 1
    Email author
  • Thorsten Arendt
    • 2
  • Jan Steffen Becker
    • 1
  • Annegret Habel
    • 1
  • Gabriele Taentzer
    • 2
  1. 1.Universität OldenburgOldenburgGermany
  2. 2.Philipps-Universität MarburgMarburgGermany

Personalised recommendations