Advertisement

Polymorphic Sesqui-Pushout Graph Rewriting

  • Michael LöweEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9151)

Abstract

The paper extends Sesqui-Pushout Graph Rewriting (SqPO) by polymorphism, a key concept in object-oriented design. For this purpose, the necessary theory for rule composition and decomposition is elaborated on an abstract categorical level. The results are applied to model rule extension and type dependent rule application. This extension mechanism qualifies SqPO – with its very useful copy mechanism for unknown contexts – as a modelling technique for extendable frameworks. Therefore, it contributes to the applicability of SqPO in software engineering. A version management example demonstrates the practical applicability of the combination of context-copying and polymorphism.

Keywords

Graph Transformation Successor Version Composite Component Type Graph White Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anjorin, A., Saller, K., Lochau, M., Schürr, A.: Modularizing triple graph grammars using rule refinement. In: Gnesi and Rensink [9], pp. 340–354Google Scholar
  2. 2.
    Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  3. 3.
    Danos, V., Heindel, T., Honorato-Zimmer, R., Stucki, S.: Reversible sesqui-pushout rewriting. In: Giese and König [8], pp. 161–176Google Scholar
  4. 4.
    Duval, D., Echahed, R., Prost, F., Ribeiro, L.: Transformation of attributed structures with cloning. In: Gnesi and Rensink [9], pp. 310–324Google Scholar
  5. 5.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer, New York (2006)Google Scholar
  6. 6.
    Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.): ICGT 2010. LNCS, vol. 6372. Springer, Heidelberg (2010) Google Scholar
  7. 7.
    Lüdtke Ferreira, A.P., Ribeiro, L.: Derivations in object-oriented graph grammars. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 416–430. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  8. 8.
    Giese, H., König, B. (eds.): ICGT 2014. LNCS, vol. 8571. Springer, Heidelberg (2014) Google Scholar
  9. 9.
    Gnesi, S., Rensink, A. (eds.): FASE 2014 (ETAPS). LNCS, vol. 8411. Springer, Heidelberg (2014) Google Scholar
  10. 10.
    Golas, U., Lambers, L., Ehrig, H., Orejas, F.: Attributed graph transformation with inheritance: efficient conflict detection and local confluence analysis using abstract critical pairs. Theor. Comput. Sci. 424, 46–68 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Guerra, E., de Lara, J.: Attributed typed triple graph transformation with inheritance in the double pushout approach. Technical Report UC3M-TR-CS-06-01, Technical Report Universidad Carlos III de Madrid (2006)Google Scholar
  12. 12.
    Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application conditions. Fundam. Inform. 26(3/4), 287–313 (1996)MathSciNetGoogle Scholar
  13. 13.
    Hayman, J., Heindel, T.: On pushouts of partial maps. In: Giese and König [8], pp. 177–191Google Scholar
  14. 14.
    Heindel, T.: Hereditary pushouts reconsidered. In: Ehrig et al.: [6], pp. 250–265Google Scholar
  15. 15.
    Kennaway, R.: Graph rewriting in some categories of partial morphisms. In: Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph-Grammars and Their Application to Computer Science. LNCS, vol. 532, pp. 490–504. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  16. 16.
    Klar, F., Königs, A., Schürr, A.: Model transformation in the large. In: Crnkovic, I., Bertolino, A. (eds.) ESEC/SIGSOFT FSE, pp. 285–294. ACM (2007)Google Scholar
  17. 17.
    Liskov, B.H., Wing, J.M.: Family values: a behavioral notion of subtyping. Technical Report CMU-CS-93-187-1, Carnegie Mellon University (1993)Google Scholar
  18. 18.
    Löwe, M.: Algebraic approach to single-pushout graph transformation. Theor. Comput. Sci. 109(1&2), 181–224 (1993)CrossRefGoogle Scholar
  19. 19.
    Löwe, M.: Graph rewriting in span-categories. In: Ehrig et al.: [6], pp. 218–233Google Scholar
  20. 20.
    Löwe, M.: Polymorphic sesqui-pushout graph transformation. Technical Report 2014/02, FHDW-Hannover (ISSN 1863–7043) (2014)Google Scholar
  21. 21.
    Löwe, M., König, H., Schulz, C.: Polymorphic single-pushout graph transformation. In: Gnesi and Rensink [9], pp. 355–369Google Scholar
  22. 22.
    Löwe, M., König, H., Schulz, C., Schultchen, M.: Algebraic graph transformations with inheritance. In: Iyoda, J., de Moura, L. (eds.) SBMF 2013. LNCS, vol. 8195, pp. 211–226. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  23. 23.
    MacNeille, H.M.: Partially ordered sets. Trans. Amer. Math. Soc. 42(3), 416–460 (1937)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.FHDW HannoverHannoverGermany

Personalised recommendations