Skip to main content

Synthetic Biology for Space Exploration: Promises and Societal Implications

Part of the Ethics of Science and Technology Assessment book series (ETHICSSCI,volume 45)

Abstract

Synthetic biology can greatly accelerate the development of human space exploration, to the point of allowing permanent human bases on Mars within our lifetime. Among the technological issues to be tackled is the need to provide the consumables required to sustain crews, and using biological systems for the on-site production of resources is an attractive approach. However, all organisms we currently know have evolved on Earth and most extraterrestrial environments stress the capabilities of even terrestrial extremophiles. Two challenges consequently arise: organisms should survive in a metabolically active state with minimal maintenance requirements, and produce compounds of interest while relying only on inputs found in the explored areas. A solution could come from the tools and methods recently developed within the field of synthetic biology. The societal implications are complex: there are implications with synthetic biology and human space colonization independently, and together there are potentially more issues. Establishing colonies relying to a large extent on modified organisms and transferring the developed technologies to terrestrial applications raises a wide range of critical ethical questions and unprecedented societal impacts, on Earth as well as on colonized planetary bodies. The scenario of humans as a multi-planet species should be addressed now, as technologies aimed at making it happen are already under development. Here we give a brief overview of the synthetic biology technologies that are being developed to aid human space exploration, before discussing the impacts of proposed medium-term scenarios on the evolution of our society.

Keywords

  • Synthetic Biology
  • Directed Evolution
  • Space Exploration
  • Rocky Desert
  • Planetary Body

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.nasa.gov/content/nasas-human-path-to-mars. Accessed 15 Mar 2015.

  2. 2.

    http://www.nasa.gov/press/2014/december/nasa-s-new-orion-spacecraft-completes-first-spaceflight-test. Accessed 15 Mar 2015.

  3. 3.

    http://www.huffingtonpost.com/2015/01/06/elon-musk-mars-colony_n_6423026.html. Accessed 15 Mar 2015.

  4. 4.

    http://www.mars-one.com. Accessed 15 Mar 2015.

  5. 5.

    http://2011.igem.org/Team:Brown-Stanford/PowerCell/Introduction. Accessed 6 Mar 2015.

  6. 6.

    http://2012.igem.org/Team:Stanford-Brown/HellCell/Introduction. Accessed 6 Mar 2015.

  7. 7.

    See for instance R. Hanbury-Tenison’s opinion in E&T Magazine (Issue 10, October 2011, p. 28), also available at http://eandt.theiet.org/magazine/2011/10/debate.cfm. Accessed 12 Mar 2015.

  8. 8.

    This analogy here refers to economic aspects only and do not represent the authors’ opinions on other elements of past colonization such as, for example, the way indigenous people were treated.

  9. 9.

    http://www.nasa.gov/pdf/189537main_mg_space_economy_20070917.pdf. Accessed 13 Mar 2015.

  10. 10.

    An analogy can be made with the military sector, which also leads to technological innovations due to the urgent need for technological advances (see for instance Perani 1997). Whether space exploration objectives are preferable to military ones as driving force for innovation is left to the reader’s judgement.

  11. 11.

    That being said, the possibility of this being seen as “playing God” cannot be ruled out.

  12. 12.

    See for instance http://planetaryprotection.nasa.gov/documents/. Accessed 6 Mar 2105.

References

  • Aikawa S, Joseph A, Yamada R et al (2013) Direct conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes. Energy Environ Sci 6:1844

    CrossRef  Google Scholar 

  • Aldrich S, Newcomb J, Carlson R (2008) Scenarios for the future of synthetic biology. Ind Biotechnol 4:39–49

    CrossRef  Google Scholar 

  • Allen CS, Burnett R, Charles J et al (2003) Guidelines and capabilities for designing human missions. NASA/TM–2003–210785

    Google Scholar 

  • Allen JL (1991) Biosphere 2: the human experiment. Penguin Books, New York

    Google Scholar 

  • Arai M, Tomita-Yokotani K, Sato S et al (2008) Growth of terrestrial cyanobacterium, Nostoc sp., on Martian Regolith Simulant and its vacuum tolerance. Biol Sci Sp 22:8–17

    CrossRef  Google Scholar 

  • Baqué M, de Vera J-P, Rettberg P, Billi D (2013) The BOSS and BIOMEX space experiments on the EXPOSE-R2 mission: endurance of the desert cyanobacterium Chroococcidiopsis under simulated space vacuum, Martian atmosphere, UVC radiation and temperature extremes. Acta Astronaut 91:180–186

    CrossRef  Google Scholar 

  • Baum SD (2010) Is humanity doomed? Insights from astrobiology. Sustainability 2:591–603

    CrossRef  Google Scholar 

  • Baker D, Zubrin R (1990) Mars direct: combining near-term technologies to achieve a two-launch manned mars mission. J Br Interplanet Soc 43:519–526

    Google Scholar 

  • Billi D, Wright DJ, Helm RF et al (2000) Engineering desiccation tolerance in Escherichia coli. Appl Environ Microbiol 66:1680–1684

    CrossRef  Google Scholar 

  • Blüm V, Gitelson J, Horneck G, Kreuzberg K (1994) Opportunities and constraints of closed man-made ecological systems on the moon. Adv Sp Res 14:271–280

    CrossRef  Google Scholar 

  • Brown II (2008a) Cyanobacteria to link closed ecological systems and in-situ resources utilization processes. 37th COSPAR Sci. Assem., Montréal, Canada, 13–20 July 2008

    Google Scholar 

  • Brown II (2008b) Mutant strains of Spirulina (Arthrospira) platensis to increase the efficiency of micro-ecological life support systems. 37th COSPAR Sci. Assem., Montréal, Canada, 13–20 July 2008

    Google Scholar 

  • Brown II, Sarkisova S (2008) Bio-weathering of lunar and Martian rocks by cyanobacteria: A resource for moon and mars exploration. Lunar Planet. Sci. XXXIX, League City, Texas, 10–14 Mar 2008

    Google Scholar 

  • Brown II, Garrison DH, Jones JA et al (2008) The development and perspectives of bio-ISRU. Jt. Annu. Meet. LEAG-ICEUM-SRR, Cape Canaveral, Florida, 28–31 Oct 2008

    Google Scholar 

  • Cao G, Concas A, Corrias G et al (2014) Process for the production of useful materials for sustaining manned space missions on Mars through in-situ resources utilization. US Pat. App. US20140165461 A1, 24 July 2012

    Google Scholar 

  • Church GM, Elowitz MB, Smolke CD et al (2014) Realizing the potential of synthetic biology. Nat Rev Mol Cell Biol 15:289–294

    CrossRef  Google Scholar 

  • Cockell CS (2010) Geomicrobiology beyond Earth: microbe-mineral interactions in space exploration and settlement. Trends Microbiol 18:308–314

    CrossRef  Google Scholar 

  • Cockell CS (2011) Synthetic geomicrobiology: engineering microbe–mineral interactions for space exploration and settlement. Int J Astrobiol 10:315–324

    CrossRef  Google Scholar 

  • Cockell CS (2014) Trajectories of Martian habitability. Astrobiology 14:182–203

    CrossRef  Google Scholar 

  • Connell K, Dick SJ, Rose K et al (1999) Workshop on the societal implications of astrobiology. NASA Technical Memorandum. NASA Ames Research Center, Moffet Field, California, pp 16–17

    Google Scholar 

  • Conrad TM, Lewis NE, Palsson BØ (2011) Microbial laboratory evolution in the era of genome-scale science. Mol Syst Biol 7:509

    CrossRef  Google Scholar 

  • Cumbers J, Rothschild LJ (2010) BISRU: Synthetic microbes for moon, Mars and beyond. In: LPI Contrib. League City, Texas, 26–20 Apr 2010

    Google Scholar 

  • Dahlgren R, Shoji S, Nanzyo M (1993) Mineralogical characteristics of volcanic ash soils. In: Shoji S, Nanzyo M (eds) Volcanic ash soils—genesis, properties and utilization. Elsevier Science Ltd, Amsterdam, pp 101–143

    CrossRef  Google Scholar 

  • Dalton B, Roberto F (2008) Lunar regolith biomining: workshop report. NASA/CP-2008-214564. NASA Ames Research Center, Moffet Field, California, 5–6 May 2007

    Google Scholar 

  • Debus A, Arnould J (2008) Planetary protection issues related to human missions to mars. Adv Sp Res 42:1120–1127

    CrossRef  Google Scholar 

  • de Crecy E, Jaronski S, Lyons B et al (2009) Directed evolution of a filamentous fungus for thermotolerance. BMC Biotechnol 9:74

    CrossRef  Google Scholar 

  • de Muynck W, Verbeken K, De Belie N, Verstraete W (2010) Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecol Eng 36:99–111

    CrossRef  Google Scholar 

  • de Vera J-P, Dulai S, Kereszturi A et al (2013) Results on the survival of cryptobiotic cyanobacteria samples after exposure to mars-like environmental conditions. Int J Astrobiol 13:35–44

    CrossRef  Google Scholar 

  • de Vera J-P, Schulze-Makuch D, Khan A et al (2014) Adaptation of an antarctic lichen to Martian niche conditions can occur within 34 days. Planet Space Sci 98:182–190

    CrossRef  Google Scholar 

  • DeVincenzi DL (1992) Planetary protection issues and the future exploration of Mars. Adv Space Res 12:121–128

    CrossRef  Google Scholar 

  • Dick SJ, Launius RD (eds) (2009) Societal impact of spaceflight. NASA SP-2007-4801, Washington

    Google Scholar 

  • Drysdale A, Ewert M, Hanford A (2003) Life support approaches for mars missions. Adv Sp Res 31:51–61

    CrossRef  Google Scholar 

  • Drysdale AE, Rutkze CJ, Albright LD, LaDue RL (2004) The minimal cost of life in space. Adv Sp Res 34:1502–1508

    CrossRef  Google Scholar 

  • Ducat DC, Way JC, Silver PA (2011) Engineering cyanobacteria to generate high-value products. Trends Biotechnol 29:95–103

    CrossRef  Google Scholar 

  • Dykhuizen DE (1993) Chemostats used for studying natural selection and adaptive evolution. Methods Enzymol 224:613–631

    CrossRef  Google Scholar 

  • Elena SF, Lenski RE (2003) Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet 4:457–469

    CrossRef  Google Scholar 

  • Ellis DI, Goodacre R (2012) Metabolomics-assisted synthetic biology. Curr Opin Biotechnol 23:22–28

    CrossRef  Google Scholar 

  • ESA, IAA (2005) The impact of space activities upon society. ESA-BR-237, Noordwijk, The Netherlands

    Google Scholar 

  • Ewing D (1995) The directed evolution of radiation resistance in E. coli. Biochem Biophys Res Commun 216:549–553

    CrossRef  Google Scholar 

  • Fajardo-Cavazos P, Waters SM, Schuerger AC et al (2012) Evolution of Bacillus subtilis to enhanced growth at low pressure: up-regulated transcription of des-desKR, encoding the fatty acid desaturase system. Astrobiology 12:258–270

    CrossRef  Google Scholar 

  • Ferrer M, Chernikova TN, Yakimov MM et al (2003) Chaperonins govern growth of Escherichia coli at low temperatures. Nat Biotechnol 21:1266–1267

    CrossRef  Google Scholar 

  • Folcher M, Fussenegger M (2012) Synthetic biology advancing clinical applications. Curr Opin Chem Biol 16:345–354

    CrossRef  Google Scholar 

  • Gao G, Tian B, Liu L et al (2003) Expression of Deinococcus radiodurans PprI enhances the radioresistance of Escherichia coli. DNA Repair 2(12):1419–1427

    CrossRef  Google Scholar 

  • Giacomelli GA, Furfaro R, Kacira M et al (2012) Bio-regenerative life support system development for Lunar/Mars habitats. In: 42nd international conference on environmental systems, San Diego, California, 15–19 July

    Google Scholar 

  • Gitelson I, Lisovsky G, MacElroy R (2003) Manmade closed ecological systems. Taylor and Francis, London

    Google Scholar 

  • Gitelson J (1992) Biological life-support systems for mars mission. Adv Sp Res 12:167–192

    CrossRef  Google Scholar 

  • Godia F, Albiol J, Montesinos J, Pérez J (2002) MELISSA: a loop of interconnected bioreactors to develop life support in space. J Biotechnol 99:319–330

    CrossRef  Google Scholar 

  • Goldman RP, Travisano M (2011) Experimental evolution of ultraviolet radiation resistance in Escherichia coli. Evolution 65:3486–3498

    CrossRef  Google Scholar 

  • Grace JM, Verseux C, Gentry D et al (2013) Elucidating microbial adaptation dynamics via autonomous exposure and sampling. In: AGU fall meeting abstracts, San Francisco, California, 9–13 Dec 2013, p 597

    Google Scholar 

  • Graham JM (2004) The biological terraforming of mars: planetary ecosynthesis as ecological succession on a global scale. Astrobiology 4:168–195

    CrossRef  Google Scholar 

  • Griffin M (2006) Science versus exploration: a false choice. Ad Astra 18:24

    Google Scholar 

  • Hallenbeck PC (2012) Microbial technologies in advanced biofuels production. Springer, New York

    CrossRef  Google Scholar 

  • Harris DR, Pollock SV, Wood EA et al (2009) Directed evolution of ionizing radiation resistance in Escherichia coli. J Bacteriol 191:5240–5252

    CrossRef  Google Scholar 

  • Harrison JP, Gheeraert N, Tsigelnitskiy D, Cockell CS (2013) The limits for life under multiple extremes. Trends Microbiol 21:204–212

    CrossRef  Google Scholar 

  • Hempel F, Bozarth AS, Lindenkamp N et al (2011) Microalgae as bioreactors for bioplastic production. Microb Cell Fact 10:81

    CrossRef  Google Scholar 

  • Hendrickx L, De Wever H, Hermans V et al (2006) Microbial ecology of the closed artificial ecosystem MELiSSA (micro-ecological life support system alternative): reinventing and compartmentalizing the Earth’s food and oxygen regeneration system for long-haul space exploration missions. Res Microbiol 157:77–86

    CrossRef  Google Scholar 

  • Hendrickx L, Mergeay M (2007) From the deep sea to the stars: human life support through minimal communities. Curr Opin Microbiol 10:231–237

    CrossRef  Google Scholar 

  • Henrikson R (2009) Earth food Spirulina: how this remarkable blue-green algae can transform your health and our planet, Revised edn. Ronore Enterprises Inc, Hana, Maui, Hawaii

    Google Scholar 

  • Hepp A, Landis G, Kubiak C (1993) a chemical approach to carbon dioxide utilization on mars. In: Lewis JS, Matthews MS, Guerrieri ML (eds) Resources of near Earth space. The University of Arizona Press, Tucson

    Google Scholar 

  • Hoffman SJ, Kaplan DI (1997) Human exploration of mars: the reference mission of the NASA mars exploration study team. Publication, NASA Special 6107

    Google Scholar 

  • Horneck G, Facius R, Reichert M et al (2003) HUMEX, a study on the survivability and adaptation of humans to long-duration exploratory missions, part I: lunar missions. Adv Space Res 31:2389–2401

    CrossRef  Google Scholar 

  • Horneck G, Facius R, Reichert M et al (2006) HUMEX, a study on the survivability and adaptation of humans to long-duration exploratory missions, part II: missions to mars. Adv Sp Res 38:752–759

    CrossRef  Google Scholar 

  • Horneck G (2008) The microbial case for mars and its implication for human expeditions to mars. Acta Astronaut 63:1015–1024

    CrossRef  Google Scholar 

  • Jonkers HM, Thijssen A, Muyzer G et al (2010) Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol Eng 36:230–235

    CrossRef  Google Scholar 

  • Kanervo E, Lehto K, Ståhle K et al (2005) Characterization of growth and photosynthesis of Synechocystis sp. PCC 6803 cultures under reduced atmospheric pressures and enhanced CO2 levels. Int J Astrobiol 4:97–100

    CrossRef  Google Scholar 

  • Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11:367–379

    CrossRef  Google Scholar 

  • Kim M, Zhang Z, Okano H et al (2012) Need-based activation of ammonium uptake in Escherichia coli. Mol Syst Biol 8:616

    Google Scholar 

  • Kral TA, Altheide TS, Lueders AE, Schuerger AC (2011) Low pressure and desiccation effects on methanogens: implications for life on mars. Planet Space Sci 59:264–270

    CrossRef  Google Scholar 

  • Kurahashi-Nakamura T, Tajika E (2006) Atmospheric collapse and transport of carbon dioxide into the subsurface on early Mars. Geophys Res Lett 33:L18205

    CrossRef  Google Scholar 

  • Langhoff S, Cumbers J, Rothschild LJ et al (2011) What are the potential roles for synthetic biology in NASA’s mission? NASA/CP-2011-216430. NASA Ames Research Center, Moffet Field, California, 30–31 July 2010

    Google Scholar 

  • Lee SY (2012) Metabolic engineering and synthetic biology in strain development. ACS Synth Biol 1:491–492

    CrossRef  Google Scholar 

  • Lehto K, Kanervo E, Stahle K, Lehto H (2007) Photosynthetic life support systems in the Martian conditions. In: Cockell C, Horneck G (eds) ROME: response of organisms to the martian environment (ESA AP-1299). ESA Communications, Noordwijk, The Netherlands, pp 151–160

    Google Scholar 

  • Lehto KM, Lehto HJ, Kanervo EA (2006) Suitability of different photosynthetic organisms for an extraterrestrial biological life support system. Res Microbiol 157:69–76

    CrossRef  Google Scholar 

  • Lobascio C, Lamantea M, Cotronei V et al (2007) Plant bioregenerative life supports: the Italian CAB project. J Plant Interact 2:125–134

    CrossRef  Google Scholar 

  • Maggi F, Pallud C (2010) Space agriculture in micro- and hypo-gravity: a comparative study of soil hydraulics and biogeochemistry in a cropping unit on earth, mars, the moon and the space station. Planet Space Sci 58:1996–2007

    CrossRef  Google Scholar 

  • Marlière P, Patrouix J, Döring V et al (2011) Chemical evolution of a bacterium’s genome. Angew Chemie 50:7109–7114

    CrossRef  Google Scholar 

  • Martin VJJ, Pitera DJ, Withers ST et al (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802

    CrossRef  Google Scholar 

  • Massa GD, Emmerich JC, Morrow RC et al (2007) Plant-growth lighting for space life support: a review. Gravitational Sp Biol 19:19–30

    Google Scholar 

  • Matheny JG (2007) Reducing the risk of human extinction. Risk Anal 27:1335–1344

    CrossRef  Google Scholar 

  • McKay CP, Davis WL (1989) Planetary protection issues in advance of human exploration of mars. Adv Space Res 9:197–202

    CrossRef  Google Scholar 

  • McKay CP, Marinova M (2001) The physics, biology, and environmental ethics of making mars habitable. Astrobiology 1:89–110

    CrossRef  Google Scholar 

  • Menezes AA, Cumbers J, Hogan JA, Arkin AP (2014) Towards synthetic biological approaches to resource utilization on space missions. J R Soc Interface 12:20140715

    CrossRef  Google Scholar 

  • Ming DW, Archer PD, Glavin DP et al (2014) Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale crater. Mars. Science 343:1245267

    Google Scholar 

  • Möllers KB, Cannella D, Jørgensen H, Frigaard N-U (2014) Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnol Biofuels 7:64

    CrossRef  Google Scholar 

  • Montague M, McArthur GH, Cockell CS et al (2012) The role of synthetic biology for in situ resource utilization (ISRU). Astrobiology 12:1135–1142

    CrossRef  Google Scholar 

  • Nelson M, Pechurkin NS, Allen JP et al (2010) Closed ecological systems, space life support and biospherics. In: Wang LK, Ivanov V, Tay J-H, Hung Y-T (eds) Environmental biotechnology. Humana Press, New York, pp 517–565

    CrossRef  Google Scholar 

  • Nicholson WL, Fajardo-Cavazos P, Fedenko J et al (2010) Exploring the low-pressure growth limit: evolution of Bacillus subtilis in the laboratory to enhanced growth at 5 kilopascals. Appl Environ Microbiol 76:7559–7565

    CrossRef  Google Scholar 

  • Nicholson WL, Krivushin K, Gilichinsky D, Schuerger AC (2013) Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for earth microbes on mars. PNAS 110:666–671

    CrossRef  Google Scholar 

  • Niederholtmeyer H, Wolfstädter BT, Savage DF et al (2010) Engineering cyanobacteria to synthesize and export hydrophilic products. Appl Environ Microbiol 76:3462–3466

    CrossRef  Google Scholar 

  • Olsson-Francis K, Cockell CS (2010a) Use of cyanobacteria for in-situ resource use in space applications. Planet Space Sci 58:1279–1285

    CrossRef  Google Scholar 

  • Olsson-Francis K, Cockell CS (2010b) Experimental methods for studying microbial survival in extraterrestrial environments. J Microbiol Methods 80:1–13

    CrossRef  Google Scholar 

  • Osanai T, Oikawa A, Numata K et al (2014) Pathway-level acceleration of glycogen catabolism by a response regulator in the cyanobacterium Synechocystis species PCC 6803. Plant Physiol 164:1831–1841

    CrossRef  Google Scholar 

  • Patnaik R, Louie S, Gavrilovic V et al (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20:707–712

    CrossRef  Google Scholar 

  • Pagliaro M, Rossi M (2010) The future of glycerol, 2nd edn. The Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  • Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488:320–328

    CrossRef  Google Scholar 

  • Perani G (1997) Military technologies and commercial applications: public policies in NATO countries. Final report to the NATO Office for Information and Press, Centro Studi di Politica Internazionale, Rome, Italy

    Google Scholar 

  • Poughon L, Farges B, Dussap CG et al (2009) Simulation of the MELiSSA closed loop system as a tool to define its integration strategy. Adv Sp Res 44:1392–1403

    CrossRef  Google Scholar 

  • Presidential Commission for the Study of Bioethical Issues (2010) New directions: the ethics of synthetic biology and emerging technologies. Government Printing Office, Washington

    Google Scholar 

  • Quintana N, Van der Kooy F, Van de Rhee MD et al (2011) Renewable energy from cyanobacteria: energy production optimization by metabolic pathway engineering. Appl Microbiol Biotechnol 91:471–490

    CrossRef  Google Scholar 

  • Race M, Denning K, Bertka CM et al (2012) Astrobiology and society: building an interdisciplinary research community. Astrobiology 12:958–965

    CrossRef  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    CrossRef  Google Scholar 

  • Raksajit W, Satchasataporn K, Lehto K et al (2012) Enhancement of hydrogen production by the filamentous non-heterocystous cyanobacterium Arthrospira sp. PCC 8005. Int J Hydrogen Energy 37:18791–18797

    CrossRef  Google Scholar 

  • Ro D-K, Paradise EM, Ouellet M et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    CrossRef  Google Scholar 

  • Rothschild LJ (1990) Earth analogs for Martian life. Microbes in evaporites, a new model system for life on Mars. Icarus 88:246–260

    CrossRef  Google Scholar 

  • Rothschild LJ (2010) A powerful toolkit for synthetic biology: Over 3.8 billion years of evolution. BioEssays 32:304–313

    CrossRef  Google Scholar 

  • Ruder WC, Lu T, Collins JJ (2011) Synthetic biology moving into the clinic. Science 333:1248–1252

    CrossRef  Google Scholar 

  • Schuerger AC, Ulrich R, Berry BJ, Nicholson WL (2013) Growth of Serratia liquefaciens under 7 mbar, 0 °C, and CO2-enriched anoxic atmospheres. Astrobiology 13:115–131

    CrossRef  Google Scholar 

  • Slade D, Radman M (2011) Oxidative stress resistance in Deinococcus radiodurans. Microbiol Mol Biol Rev 75:133–191

    CrossRef  Google Scholar 

  • Spiller H, Latorre C, Hassan ME, Shanmugam KT (1986) Isolation and characterization of nitrogenase-derepressed mutant strains of cyanobacterium Anabaena variabilis. J Bacteriol 165:412–419

    Google Scholar 

  • Subramanian G, Shanmugasundaram S (1986) Uninduced ammonia release by the nitrogen-fixing cyanobacterium Anabaena. FEMS Microbiol Lett 37:151–154

    CrossRef  Google Scholar 

  • Thomas DJ, Boling J, Boston PJ et al (2006) Extremophiles for ecopoiesis: desirable traits for and survivability of pioneer Martian organisms. Gravitational Sp Biol 19:91–104

    Google Scholar 

  • Tikhomirov AA, Ushakova SA, Kovaleva NP et al (2007) Biological life support systems for a mars mission planetary base: problems and prospects. Adv Sp Res 40:1741–1745

    CrossRef  Google Scholar 

  • Tokano T (2005) Water on Mars and life. Springer, Berlin

    CrossRef  Google Scholar 

  • Toprak E, Veres A, Yildiz S, Pedraza J (2013) Building a morbidostat: an automated continuous-culture device for studying bacterial drug resistance under dynamically sustained drug inhibition. Nat Protoc 8:555–567

    CrossRef  Google Scholar 

  • Verseux C, Baqué M, Lehto K, de Vera J-PP, Rothschild LJ, Billi D (2015) Sustainable life support on mars—the potential roles of cyanobacteria. Int J Astrobiol. doi: 10.1017/S147355041500021X

    Google Scholar 

  • Wang HH, Isaacs FJ, Carr PA et al (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898

    CrossRef  Google Scholar 

  • Wassmann M, Moeller R, Reitz G, Rettberg P (2010) Adaptation of Bacillus subtilis cells to Archean-like UV climate: relevant hints of microbial evolution to remarkably increased radiation resistance. Astrobiology 10:605–615

    CrossRef  Google Scholar 

  • Way JC, Silver PA, Howard RJ (2011) Sun-driven microbial synthesis of chemicals in space. Int J Astrobiol 10:359–364

    CrossRef  Google Scholar 

  • Weber W, Fussenegger M (2011) Emerging biomedical applications of synthetic biology. Nat Rev Genet 13:21–35

    CrossRef  Google Scholar 

  • Webster CR, Mahaffy PR, Atreya SK et al (2015) Mars methane detection and variability at Gale crater. Science 347:415–417

    CrossRef  Google Scholar 

  • Zhang F, Rodriguez S, Keasling JD (2011) Metabolic engineering of microbial pathways for advanced biofuels production. Curr Opin Biotechnol 22:775–783

    CrossRef  Google Scholar 

  • Zubrin R (1995) The economic viability of Mars colonization. J Br Interplanet Soc 48:407–414

    Google Scholar 

  • Zubrin R, Wagner R (1996) The case for mars: the plan to settle the Red Planet and why we must. Free Press, New York

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to those who made possible the TASynBio Summer School where this book chapter was presented: the organizers Kristin Hagen, Margret Engelhard and Georg Toepfer, the attendees for their insightful comments and friendly conversations, and the funding body: the German Federal Ministry of Education and Research. They are thankful to the editors, whose comments and suggestions lead to significant improvements to the manuscript. They also thank the Italian Space Agency for supporting the BIOMEX_Cyano and BOSS_Cyano experiments. This work was supported by IGPL’s appointment to the NASA Postdoctoral Program at NASA Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA, and by CV’s appointment to the NASA Education Associates Program managed by the Universities Space Research Association. Therefore the authors are also greatly thankful to the then Center Director S. Pete Worden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyprien N. Verseux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Verseux, C.N., Paulino-Lima, I.G., Baqué, M., Billi, D., Rothschild, L.J. (2016). Synthetic Biology for Space Exploration: Promises and Societal Implications. In: Hagen, K., Engelhard, M., Toepfer, G. (eds) Ambivalences of Creating Life. Ethics of Science and Technology Assessment, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-319-21088-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21088-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21087-2

  • Online ISBN: 978-3-319-21088-9

  • eBook Packages: EngineeringEngineering (R0)