Skip to main content

Mesenchymal Stromal Cell-Based Therapies for Lung Disease

  • Chapter
Stem Cells in the Lung

Abstract

Change is afoot in the epidemiology of lung disease as populations age. Non-communicable, non-malignant lung disease is increasing in prevalence, and unfortunately few treatments currently exist. Meeting this emerging clinical need will require a deeper understanding of how the human lung endures the innumerable relatively minor insults to which it is exposed each day; and how more extensive and elaborate repair occurs after severe injury. Failure of such repair underlies the pathogenesis of degenerative lung diseases like idiopathic pulmonary fibrosis (IPF) and acute lung injury. In this chapter, emerging knowledge in the field of lung regenerative medicine will be discussed against this backdrop, with special emphasis on the potential role of mesenchymal stromal cells in lung homeostasis and repair. Recent advances in our understanding of the pathogenesis of IPF will be highlighted as an example of how regenerative approaches could form the basis for the therapeutic advances required to meet the challenge of population ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prockop DJ, Prockop SE, Bertoncello I (2014) Are clinical trials with mesenchymal stem/progenitor cells too far ahead of the science? Lessons from experimental hematology. Stem Cells 32(12):3055–3061

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3(4):393–403

    CAS  PubMed  Google Scholar 

  3. Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16(3):381–390

    CAS  PubMed  Google Scholar 

  4. Lama VN, Smith L, Badri L, Flint A, Andrei AC, Murray S et al (2007) Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. J Clin Invest 117(4):989–996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Keating A (2012) Mesenchymal stromal cells: new directions. Cell Stem Cell 10(6):709–716

    Article  CAS  PubMed  Google Scholar 

  6. Sabatini F, Petecchia L, Tavian M, de Villeroche VJ, Rossi GA, Brouty-Boye D (2005) Human bronchial fibroblasts exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities. Lab Invest 85(8):962–971

    Article  CAS  PubMed  Google Scholar 

  7. Alt E, Yan Y, Gehmert S, Song YH, Altman A, Vykoukal D, Bai X (2011) Fibroblasts share mesenchymal phenotypes with stem cells, but lack their differentiation and colony-forming potential. Biol Cell 103(4):197–208

    Article  CAS  PubMed  Google Scholar 

  8. Blasi A, Martino C, Balducci L, Saldarelli M, Soleti A, Navone SE et al (2011) Dermal fibroblasts display similar phenotypic and differentiation capacity to fat-derived mesenchymal stem cells, but differ in anti-inflammatory and angiogenic potential. Vasc Cell 3(1):5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ho AD, Wagner W, Franke W (2008) Heterogeneity of mesenchymal stromal cell preparations. Cytotherapy 10(4):320–330

    Article  CAS  PubMed  Google Scholar 

  10. Marriott S, Baskir RS, Gaskill C, Menon S, Carrier EJ, Williams J et al (2014) ABCG2pos lung mesenchymal stem cells are a novel pericyte subpopulation that contributes to fibrotic remodeling. Am J Physiol Cell Physiol 307(8):C684–C698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Sinclair K, Yerkovich ST, Chambers DC (2013) Mesenchymal stem cells and the lung. Respirology 18(3):397–411

    Article  PubMed  Google Scholar 

  12. Frenette PS, Pinho S, Lucas D, Scheiermann C (2013) Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu Rev Immunol 31:285–316

    Article  PubMed  Google Scholar 

  13. Lv FJ, Tuan RS, Cheung KM, Leung VY (2014) Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 32(6):1408–1419

    Article  CAS  PubMed  Google Scholar 

  14. Chambers DC, Hopkins PM (2013) Idiopathic pulmonary fibrosis: a degenerative disease requiring a regenerative approach. Am J Respir Crit Care Med 188(2):252–253

    Article  PubMed  Google Scholar 

  15. Mackenzie TC, Flake AW (2001) Human mesenchymal stem cells persist, demonstrate site-specific multipotential differentiation, and are present in sites of wound healing and tissue regeneration after transplantation into fetal sheep. Blood Cells Mol Dis 27(3):601–604

    Article  CAS  PubMed  Google Scholar 

  16. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 31(10):890–896

    Article  PubMed  Google Scholar 

  17. Huang XP, Sun Z, Miyagi Y, McDonald Kinkaid H, Zhang L, Weisel RD, Li RK (2010) Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation 122(23):2419–2429

    Article  CAS  PubMed  Google Scholar 

  18. Poncelet AJ, Vercruysse J, Saliez A, Gianello P (2007) Although pig allogeneic mesenchymal stem cells are not immunogenic in vitro, intracardiac injection elicits an immune response in vivo. Transplantation 83(6):783–790

    Article  PubMed  Google Scholar 

  19. Beggs KJ, Lyubimov A, Borneman JN, Bartholomew A, Moseley A, Dodds R et al (2006) Immunologic consequences of multiple, high-dose administration of allogeneic mesenchymal stem cells to baboons. Cell Transplant 15(8–9):711–721

    Article  PubMed  Google Scholar 

  20. Nauta AJ, Westerhuis G, Kruisselbrink AB, Lurvink EG, Willemze R, Fibbe WE (2006) Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 108(6):2114–2120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Poggi A, Prevosto C, Zancolli M, Canevali P, Musso A, Zocchi MR (2007) NKG2D and natural cytotoxicity receptors are involved in natural killer cell interaction with self-antigen presenting cells and stromal cells. Ann N Y Acad Sci 1109:47–57

    Article  CAS  PubMed  Google Scholar 

  22. Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M (2006) Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24(1):74–85

    Article  PubMed  Google Scholar 

  23. Cutler AJ, Limbani V, Girdlestone J, Navarrete CV (2010) Umbilical cord-derived mesenchymal stromal cells modulate monocyte function to suppress T cell proliferation. J Immunol 185(11):6617–6623

    Article  CAS  PubMed  Google Scholar 

  24. Oh DY, Cui P, Hosseini H, Mosse J, Toh BH, Chan J (2012) Potently immunosuppressive 5-fluorouracil-resistant mesenchymal stromal cells completely remit an experimental autoimmune disease. J Immunol 188(5):2207–2217

    Article  CAS  PubMed  Google Scholar 

  25. Chao YH, Wu HP, Wu KH, Tsai YG, Peng CT, Lin KC et al (2014) An increase in CD3 + CD4 + CD25+ regulatory T cells after administration of umbilical cord-derived mesenchymal stem cells during sepsis. PLoS One 9(10), e110338

    Article  PubMed Central  PubMed  Google Scholar 

  26. Kota DJ, Wiggins LL, Yoon N, Lee RH (2013) TSG-6 produced by hMSCs delays the onset of autoimmune diabetes by suppressing Th1 development and enhancing tolerogenicity. Diabetes 62(6):2048–2058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Obermajer N, Popp FC, Soeder Y, Haarer J, Geissler EK, Schlitt HJ, Dahlke MH (2014) Conversion of Th17 into IL-17Aneg regulatory T cells: a novel mechanism in prolonged allograft survival promoted by mesenchymal stem cell-supported minimized immunosuppressive therapy. J Immunol 193(10):4988–4999

    Article  CAS  PubMed  Google Scholar 

  28. Tan J, Wu W, Xu X, Liao L, Zheng F, Messinger S et al (2012) Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA 307(11):1169–1177

    Article  CAS  PubMed  Google Scholar 

  29. Grove DA, Xu J, Joodi R, Torres-Gonzales E, Neujahr D, Mora AL, Rojas M (2011) Attenuation of early airway obstruction by mesenchymal stem cells in a murine model of heterotopic tracheal transplantation. J Heart Lung Transplant 30(3):341–350

    Article  PubMed Central  PubMed  Google Scholar 

  30. Guo Z, Zhou X, Li J, Meng Q, Cao H, Kang L, Ni Y, Fan H, Liu Z (2013) Mesenchymal stem cells reprogram host macrophages to attenuate obliterative bronchiolitis in murine orthotopic tracheal transplantation. Int Immunopharmacol 15(4):726–734

    Article  CAS  PubMed  Google Scholar 

  31. Raza K, Price AP, Matson A, Tolar J, Hertz MI, Panoskaltsis-Mortari A (2011) MSC therapy for obliterative bronchiolitis (OB). Am J Respir Crit Care Med 183:A5289

    Google Scholar 

  32. Chambers DC, Hopkins PM, Sturm M, Lawrence S, Enever D, Sparks L et al (2012) Mesenchymal stromal cell therapy for bronchiolitis obliterans syndrome—preliminary data in humans. J Heart Lung Transplant 31(4):S67

    Article  Google Scholar 

  33. Sharpless NE, DePinho RA (2007) How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 8(9):703–713

    Article  CAS  PubMed  Google Scholar 

  34. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. McQualter JL, Yuen K, Williams B, Bertoncello I (2010) Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc Natl Acad Sci U S A 107(4):1414–1419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kumar ME, Bogard PE, Espinoza FH, Menke DB, Kingsley DM, Krasnow MA (2014) Mesenchymal cells. Defining a mesenchymal progenitor niche at single-cell resolution. Science 346(6211):1258810

    Article  PubMed Central  PubMed  Google Scholar 

  37. Lee JH, Kim CF (2014) Developmental biology. Mesenchymal progenitor panoply. Science 346(6211):810–811

    Article  CAS  PubMed  Google Scholar 

  38. Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR et al (2013) Type 2 alveolar cells are stem cells in adult lung. J Clin Invest 123(7):3025–3036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Jun D, Garat C, West J, Thorn N, Chow K, Cleaver T et al (2011) The pathology of bleomycin-induced fibrosis is associated with loss of resident lung mesenchymal stem cells that regulate effector T-cell proliferation. Stem Cells 29(4):725–735

    Article  PubMed Central  PubMed  Google Scholar 

  40. Tropea KA, Leder E, Aslam M, Lau AN, Raiser DM, Lee JH et al (2012) Bronchioalveolar stem cells increase after mesenchymal stromal cell treatment in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 302(9):L829–L837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K et al (2012) Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 18(5):759–765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Spees JL, Olson SD, Whitney MJ, Prockop DJ (2006) Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci U S A 103(5):1283–1288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Sueblinvong V, Loi R, Eisenhauer PL, Bernstein IM, Suratt BT, Spees JL, Weiss DJ (2008) Derivation of lung epithelium from human cord blood-derived mesenchymal stem cells. Am J Respir Crit Care Med 177(7):701–711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Karoubi G, Cortes-Dericks L, Breyer I, Schmid RA, Dutly AE (2009) Identification of mesenchymal stromal cells in human lung parenchyma capable of differentiating into aquaporin 5-expressing cells. Lab Invest 89(10):1100–1114

    Article  CAS  PubMed  Google Scholar 

  45. Prockop DJ (2007) “Stemness” does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clin Pharmacol Ther 82(3):241–243

    Article  CAS  PubMed  Google Scholar 

  46. Song JJ, Ott HC (2011) Bioartificial lung engineering. Am J Transplant 12(2):283–288

    Article  PubMed  Google Scholar 

  47. Tzouvelekis A, Paspaliaris V, Koliakos G, Ntolios P, Bouros E, Oikonomou A (2013) A prospective, non-randomized, no placebo-controlled, phase Ib clinical trial to study the safety of the adipose derived stromal cells-stromal vascular fraction in idiopathic pulmonary fibrosis. J Transl Med 11:171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Brooke G, Tong H, Levesque JP, Atkinson K (2008) Molecular trafficking mechanisms of multipotent mesenchymal stem cells derived from human bone marrow and placenta. Stem Cells Dev 17(5):929–940

    Article  CAS  PubMed  Google Scholar 

  49. Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI et al (2009) Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev 18(5):683–692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Schrepfer S, Deuse T, Reichenspurner H, Fischbein MP, Robbins RC, Pelletier MP (2007) Stem cell transplantation: the lung barrier. Transplant Proc 39(2):573–576

    Article  CAS  PubMed  Google Scholar 

  51. Yan X, Liu Y, Han Q, Jia M, Liao L, Qi M, Zhao RC (2007) Injured microenvironment directly guides the differentiation of engrafted Flk-1(+) mesenchymal stem cell in lung. Exp Hematol 35(9):1466–1475

    Article  CAS  PubMed  Google Scholar 

  52. Chambers DC, Enever D, Ilic N, Sparks L, Whitelaw K, Ayres J et al (2014) A phase 1b study of placenta-derived mesenchymal stromal cells in patients with idiopathic pulmonary fibrosis. Respirology 19(7):1013–1018

    Article  PubMed  Google Scholar 

  53. Weiss DJ, Casaburi R, Flannery R, LeRoux-Williams M, Tashkin DP (2013) A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest 143(6):1590–1598

    Article  CAS  PubMed  Google Scholar 

  54. Sahin E, Depinho RA (2010) Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464(7288):520–528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Sdrimas K, Kourembanas S (2014) MSC microvesicles for the treatment of lung disease: a new paradigm for cell-free therapy. Antioxid Redox Signal 21(13):1905–1915

    Article  CAS  PubMed  Google Scholar 

  56. WHO (2014) World health statistics 2014. WHO, Geneva

    Google Scholar 

  57. Navaratnam V, Fleming KM, West J, Smith CJ, Jenkins RG, Fogarty A, Hubbard RB (2011) The rising incidence of idiopathic pulmonary fibrosis in the U.K. Thorax 66(6):462–467

    Article  CAS  PubMed  Google Scholar 

  58. Raghu G, Weycker D, Edelsberg J, Bradford WZ, Oster G (2006) Incidence and prevalence of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 174(7):810–816

    Article  PubMed  Google Scholar 

  59. Raghu G, Chen SY, Yeh WS, Maroni B, Li Q, Lee YC, Collard HR (2014) Idiopathic pulmonary fibrosis in US Medicare beneficiaries aged 65 years and older: incidence, prevalence, and survival, 2001–11. Lancet Respir Med 2(7):566–572

    Article  PubMed  Google Scholar 

  60. Johnson ER, Matthay MA (2010) Acute lung injury: epidemiology, pathogenesis, and treatment. J Aerosol Med Pulm Drug Deliv 23(4):243–252

    Article  PubMed Central  PubMed  Google Scholar 

  61. Zhu YG, Feng XM, Abbott J, Fang XH, Hao Q, Monsel A et al (2014) Human mesenchymal stem cell microvesicles for treatment of E. coli endotoxin-induced acute lung injury in mice. Stem Cells 32(1):116–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Matthay MA, Thompson BT, Read EJ, McKenna DH Jr, Liu KD, Calfee CS, Lee JW (2010) Therapeutic potential of mesenchymal stem cells for severe acute lung injury. Chest 138(4):965–972

    Article  PubMed Central  PubMed  Google Scholar 

  63. Lee JW, Krasnodembskaya A, McKenna DH, Song Y, Abbott J, Matthay MA (2013) Therapeutic effects of human mesenchymal stem cells in ex vivo human lungs injured with live bacteria. Am J Respir Crit Care Med 187(7):751–760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Lee JW, Fang X, Krasnodembskaya A, Howard JP, Matthay MA (2011) Concise review: mesenchymal stem cells for acute lung injury: role of paracrine soluble factors. Stem Cells 29(6):913–919

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. King TE Jr, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK et al (2014) A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 370(22):2083–2092

    Article  PubMed  Google Scholar 

  66. Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U et al (2014) Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 370(22):2071–2082

    Article  PubMed  Google Scholar 

  67. Mukhopadhyay S, Parambil JG (2012) Acute interstitial pneumonia (AIP): relationship to Hamman-Rich syndrome, diffuse alveolar damage (DAD), and acute respiratory distress syndrome (ARDS). Semin Respir Crit Care Med 33(5):476–485

    Article  PubMed  Google Scholar 

  68. Chambers DC, Clarke BE, McGaughran J, Garcia CK (2012) Lung fibrosis, premature graying, and macrocytosis. Am J Respir Crit Care Med 186(5):e8–e9

    Article  PubMed Central  PubMed  Google Scholar 

  69. Tsai CC, Chen CL, Liu HC, Lee YT, Wang HW, Hou LT, Hung SC (2010) Overexpression of hTERT increases stem-like properties and decreases spontaneous differentiation in human mesenchymal stem cell lines. J Biomed Sci 17:64

    Article  PubMed Central  PubMed  Google Scholar 

  70. Armanios M, Blackburn EH (2012) The telomere syndromes. Nat Rev Genet 13(10):693–704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Stuart BD, Lee JS, Kozlitina J, Noth I, Devine MS, Glazer CS et al (2014) Effect of telomere length on survival in patients with idiopathic pulmonary fibrosis: an observational cohort study with independent validation. Lancet Respir Med 2(7):557–565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Chilosi M, Doglioni C, Murer B, Poletti V (2010) Epithelial stem cell exhaustion in the pathogenesis of idiopathic pulmonary fibrosis. Sarcoidosis Vasc Diffuse Lung Dis 27(1):7–18

    CAS  PubMed  Google Scholar 

  73. Toonkel RL, Hare JM, Matthay MA, Glassberg MK (2013) Mesenchymal stem cells and idiopathic pulmonary fibrosis. Potential for clinical testing. Am J Respir Crit Care Med 188(2):133–140

    Article  PubMed  Google Scholar 

  74. Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, Phinney DG (2003) Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A 100(14):8407–8411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Cui A, Dai HP, Dai JW, Pang BS, Niu SJ, Lu YP, Wang C (2007) Effects of bone marrow mesenchymal stem cells on bleomycin induced pulmonary fibrosis in rats. Zhonghua Jie He He Hu Xi Za Zhi 30(9):677–682

    PubMed  Google Scholar 

  76. Zhao F, Zhang YF, Liu YG, Zhou JJ, Li ZK, Wu CG, Qi HW (2008) Therapeutic effects of bone marrow-derived mesenchymal stem cells engraftment on bleomycin-induced lung injury in rats. Transplant Proc 40(5):1700–1705

    Article  CAS  PubMed  Google Scholar 

  77. Moodley Y, Atienza D, Manuelpillai U, Samuel CS, Tchongue J, Ilancheran S, Boyd R, Trounson A (2009) Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. Am J Pathol 175(1):303–313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Bitencourt CS, Pereira PA, Ramos SG, Sampaio SV, Arantes EC, Aronoff DM, Faccioli LH (2011) Hyaluronidase recruits mesenchymal-like cells to the lung and ameliorates fibrosis. Fibrogenesis Tissue Repair 4(1):3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Choi M, Ban T, Rhim T (2014) Therapeutic use of stem cell transplantation for cell replacement or cytoprotective effect of microvesicle released from mesenchymal stem cell. Mol Cells 37(2):133–139

    Article  PubMed Central  PubMed  Google Scholar 

  80. Ntolios P, Janes SM (2013) Mesenchymal stem cell therapy for lung diseases: oasis or mirage? Respiration 85(4):279–280

    Article  PubMed  Google Scholar 

  81. Weiss DJ, Ortiz LA (2013) Cell therapy trials for lung diseases: progress and cautions. Am J Respir Crit Care Med 188(2):123–125

    Article  PubMed Central  PubMed  Google Scholar 

  82. Baber SR, Deng W, Master RG, Bunnell BA, Taylor BK, Murthy SN et al (2007) Intratracheal mesenchymal stem cell administration attenuates monocrotaline-induced pulmonary hypertension and endothelial dysfunction. Am J Physiol Heart Circ Physiol 292(2):H1120–H1128

    Article  CAS  PubMed  Google Scholar 

  83. Liang OD, Mitsialis SA, Chang MS, Vergadi E, Lee C, Aslam M et al (2011) Mesenchymal stromal cells expressing heme oxygenase-1 reverse pulmonary hypertension. Stem Cells 29(1):99–107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Takemiya K, Kai H, Yasukawa H, Tahara N, Kato S, Imaizumi T (2010) Mesenchymal stem cell-based prostacyclin synthase gene therapy for pulmonary hypertension rats. Basic Res Cardiol 105(3):409–417

    Article  CAS  PubMed  Google Scholar 

  85. Wong PM, Lees AN, Louw J, Lee FY, French N, Gain K et al (2008) Emphysema in young adult survivors of moderate-to-severe bronchopulmonary dysplasia. Eur Respir J 32(2):321–328

    Article  CAS  PubMed  Google Scholar 

  86. Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC et al (2012) Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One 7(10), e47559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Chang YS, Ahn SY, Yoo HS, Sung SI, Choi SJ, Oh WI, Park WS (2014) Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial. J Pediatr 164(5):966–972, e966

    Article  PubMed  Google Scholar 

  88. Couzin J, Kaiser J (2005) Gene therapy. As Gelsinger case ends, gene therapy suffers another blow. Science 307(5712):1028

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Chambers MBBS, MRCP, FRACP, MD. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chambers, D. (2015). Mesenchymal Stromal Cell-Based Therapies for Lung Disease. In: Bertoncello, I. (eds) Stem Cells in the Lung. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-21082-7_14

Download citation

Publish with us

Policies and ethics