Advertisement

A Bi-level Optimization Approach to Get an Optimal Combination of Cost Functions for Pilot’s Arm Movement: The Case of Helicopter’s Flying Aid Functions with Haptic Feedback

  • Sami CheffiEmail author
  • Thomas Rakotomamonjy
  • Laurent Binet
  • Philippe Bidaud
  • Jean Christophe Sarrazin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9185)

Abstract

Force cueing and active control technology hold great opportunities in the next generation of helicopters. The overall goal would be to reduce the pilot workload and increase the situational awareness In this paper we present an approach to help in designing such forces through the understanding of human motor control and the relation that could be established with piloting an aircraft precisely pilot’s arm movement. This method is based on the comprehension of the optimality criteria (cost functions and their weightings) within inverse optimal control combined with Fitt’s experiment using an active side stick.

Keywords

Cost functions Inverse optimal control Pilot’s arm movement Fitt’s law 

References

  1. 1.
    Mühlratzer, J., Konrad, G.: Active Stick Controllers for Fly-by-Wire Helicopters–Operational Requirements and Technical Design ParametersGoogle Scholar
  2. 2.
    Fitt’s, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 47, 381–391 (1954)CrossRefGoogle Scholar
  3. 3.
    Albrecht, S.: Modeling and Numerical Solution of Inverse Optimal Control Problems for the Analysis of Human Motions. Technische UniversitätMünchen (2013). http://mediatum.ub.tum.de/node?id=1136934
  4. 4.
    Sahnoun, M.: Conception et Simulation D’une Commande À Retour D’effort Pour Fauteuil, Roulant Électrique. Metz (2007). http://www.theses.fr/2007METZ039S
  5. 5.
    Casiez, G.: Contribution à l’étude des interfaces haptiques Le DigiHaptic: un périphérique haptique de bureau à degrés de liberté séparés. Lille (2004). http://www.lifl.fr/~casiez/publications/TheseCasiez.pdf
  6. 6.
    Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Hum. Factors J. Hum. Factors Ergon. Soc. 37(1), 32–64 (1995)CrossRefGoogle Scholar
  7. 7.
    Wickens, C.D., Mavor, A.S., Parasuraman, R., McGee, J.P.: The Future of Air Traffic Control: Human Operators and Automation, pp. 1–336. The National Academies Press, Washington, D.C. (1998)Google Scholar
  8. 8.
    Olivari, Mario, Nieuwenhuizen, Frank M., Bülthoff, Heinrich H., Pollini, Lorenzo: Pilot adaptation to different classes of haptic aids in tracking tasks. J. Guidance Control Dyn. 37(6), 1741–1753 (2014). doi: 10.2514/1.G000534 CrossRefGoogle Scholar
  9. 9.
    Albrecht, S., Leibold, M., Ulbrich, M.: A bilevel optimization approach to obtain optimal cost functions for human arm movements. Numer. Algebra Control Optim. 2(1), 105–127 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Berret, B., Chiovetto, E., Nori, F., Pozzo, T.: Evidence for composite cost functions in arm movement planning: an inverse optimal control approach. PLoS Comput. Biol. 7(10), e1002183-1(18) (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Mombaur, K., Truong, A., Laumond, J.P.: From human to humanoid locomotion - an inverse optimal control approach. Auton. Robot. 28, 369–383 (2009)CrossRefGoogle Scholar
  12. 12.
    Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5, 1688–1703 (1985)Google Scholar
  13. 13.
    Uno, Y., Kawato, M., Suzuki, R.: Formation and control of optimal trajectory in human multijoint arm movement. Biol. Cybern. 61(2), 89–101 (1989)CrossRefGoogle Scholar
  14. 14.
    Wada, Y., Kaneko, Y., Nakano, E., Osu, R., Kawato, M.: Quantitative examinations for multi joint arm trajectory planning–using a robust calculation algorithm of the minimum commanded torque change trajectory. Neural Netw. 14, 381–393 (2001)CrossRefGoogle Scholar
  15. 15.
    Biess, A., Liebermann, D.G., Flash, T.: A computational model for redundant human threedimensional pointing movements: integration of independent spatial and temporal motor plans simplies movement dynamics. Neuroscience 27(48), 13045–13064 (2007)CrossRefGoogle Scholar
  16. 16.
    Berret, B., Darlot, C., Jean, F., Pozzo, T., Papaxanthis, C., et al.: The inactivation principle: mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements. PLoS Comput. Biol. 4, e1000194 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Guigon, E., Baraduc, P., Desmurget, M.: Computational motor control: redundancy and invariance. J. Neurophysiol. 97, 331–347 (2007)CrossRefGoogle Scholar
  18. 18.
    Ohta, K., Svinin, M.M., Luo, Z., Hosoe, S., Laboissiere, R.: Optimal trajectory formation of constrained human arm reaching movements. Biol. Cybern. 91(1), 23–36 (2004)CrossRefzbMATHGoogle Scholar
  19. 19.
    Sylla, N., Bonnet, V., Venture, G., Armande, N., Fraisse, P.: Human arm optimal motion analysis in industrial screwing task. In: 2014 5th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 964–969 (2014). doi: 10.1109/BIOROB.2014.6913905
  20. 20.
    Ulbrich, Michael, Leibold, Marion, Albrecht, Sebastian: A bilevel optimization approach to obtain optimal cost functions for human arm movements. Numer. Algebra Control Optim. 2(1), 105–127 (2012). doi: 10.3934/naco.2012.2.105 MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hosman, R.J.A.W., Benard, B.: Active and passive side stick controllers in manual aircraft control, pp. 527–529 (1990). doi: 10.1109/ICSMC.1990.142165
  22. 22.
    Loeches de La Fuente, H.: Étude multi-niveaux du contrôle d’un périphérique d’interaction de type joystick. Marseille (2014). http://www.theses.fr/s117852
  23. 23.
    Bootsma, R.J., Boulard, M., Fernandez, L., Mottet, D.: Informational constraints in human precision aiming. Neurosci. Lett. 333(2), 141–145 (2002)CrossRefGoogle Scholar
  24. 24.
    Wu, G., Van der Helm, F.C.T., Veeger, H., Makhsous, M., Van Roy, P., Anglin, C., McQuade, K.: ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion–Part II: shoulder, elbow, wrist and hand. J. Biomech. 38(5), 981–992 (2005)CrossRefGoogle Scholar
  25. 25.
    Hermens, H.J., Freriks, B., Disselhorst-Klug, C., Rau, G.: Developmentof recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 10(5), 361–374 (2000)CrossRefGoogle Scholar
  26. 26.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sami Cheffi
    • 1
    Email author
  • Thomas Rakotomamonjy
    • 1
  • Laurent Binet
    • 1
  • Philippe Bidaud
    • 1
  • Jean Christophe Sarrazin
    • 1
  1. 1.ONERASalon de ProvenceFrance

Personalised recommendations