Advertisement

Spatial Mapping of Physical and Virtual Spaces as an Extension of Natural Mapping: Relevance for Interaction Design and User Experience

  • Daniel Pietschmann
  • Peter Ohler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9179)

Abstract

Natural user interfaces are designed to be intuitive, and quick to learn. With the use of natural mapping, they rely on previous knowledge or skills from users by employing spatial analogies, cultural standards or biological effects. Virtual environments with a high interaction fidelity also use rich spatial information in addition to natural mapping, e.g. stereoscopy or head-tracking. However, an additional factor for naturalism is the relationship of perceived interaction spaces: We propose to examine the Spatial Mapping of the perceived physical and virtual spaces as an extension of Natural Mapping. Similarly to NM, a high degree of spatial mapping using an isomorphic mapping should result in more intuitive interactions, reducing the mental workload required. However, the benefits of Spatial Mapping on user experience and task performance are only evident for complex spatial tasks. As a consequence, many tasks do not benefit from complex spatial information (e.g. stereoscopy or head-tracking).

Keywords

Natural mapping User experience Mental models Spatial mapping 

Notes

Acknowledgements

The work presented has been partially funded by the German Research Foundation (DFG) as part of the research training group Connecting Virtual and Real Social Worlds (grant 1780).

References

  1. 1.
    Norman, D.: The Design of Everyday Things Revised and Expanded. Basic Books, New York (2013)Google Scholar
  2. 2.
    Johnson-Laird, P.N.: Mental models: Towards a cognitive science of language, inference, and consciousness. Cambridge University Press, Cambridge (1983)Google Scholar
  3. 3.
    Anderson, R.C.: The notion of schemata and the educational enterprise: general discussion of the conference. In: Anderson, R.C., Montague, W.E. (eds.) Schooling and the Acquisition of Knowledge, pp. 415–431. Lawrence Erlbaum, Hillsdale (1977)Google Scholar
  4. 4.
    Schank, R.C., Abelson, R.: Scripts, plans, goals and understanding: an inquiry into human knowledge structures. Lawrence Erlbaum, Hillsdale (1977)Google Scholar
  5. 5.
    Elson, M., van Looy, J., Vermeulen, L., Van den Bosch, F.: In the mind’s: no Evidence for an effect of stereoscopic 3D on user experience of digital games. In: ECREA ECC 2012 preconference Experiencing Digital Games: Use, Effects Culture of Gaming, Istanbul (2012)Google Scholar
  6. 6.
    Lapointe, J.F., Savard, P., Vinson, N.G.: A comparative study of four input devices for desktop virtual walkthroughs. Comput. Hum. Behav. 27, 2186–2191 (2011)CrossRefGoogle Scholar
  7. 7.
    Slater, M., Usoh, M.: Body Centered Interaction in Immersive Virtual Environments. In: Thalmann, M., Thalmann, D. (eds.) Artificial Life and Virtual Reality, pp. 125–148. John Wiley, Oxford, UK (1994)Google Scholar
  8. 8.
    Costa, M.R., Kim, S.Y., Biocca, F.: Embodiment and embodied cognition. In: 5th International Conference, VAMR 2013, Held as Part of HCI International 2013, Las Vegas, pp. 333–342, 21–26 July 2013Google Scholar
  9. 9.
    Steuer, J.: Defining virtual reality: dimensions determining telepresence. J. Commun. 42, 73–93 (1992)CrossRefGoogle Scholar
  10. 10.
    Johnson-Laird, P.N.: The history of mental models. In: Manktelow, K., Chung, M.C. (eds.) Psychology of reasoning: Theoretical and historical perspectives, pp. 179–212. Psychol. Press, New York (2004)Google Scholar
  11. 11.
    Van Dijk, T.A., Kintsch, W.: Strategies of Discourse Comprehension. Academic Press, New York (1983)Google Scholar
  12. 12.
    Ohler, P.: Kognitive Filmpsychologie. Verarbeitung und mentale Repräsentation Cognitive psychology of movies. Processing and mental representation of narrative movies. MAkS-Publikationen, Münster (1994)Google Scholar
  13. 13.
    Wirth, W., Hartmann, T., Böcking, S., Vorderer, P., Klimmt, C., Schramm, H., Saari, T., Laarni, J., Ravaja, N., Gouveia, F.R., Biocca, F., Sacau, A., Jäncke, L., Baumgartner, T., Jäncke, P.: A process model of the formation of spatial presence experiences. Media Psychol. 9, 493–525 (2007)CrossRefGoogle Scholar
  14. 14.
    Tamborini, R., Skalski, P.: The role of presence in the experience of electronic games. In: Vorderer, P., Bryant, J. (eds.) Playing video games. motives, responses and consequences, pp. 225–240. Lawrence Erlbaum, Mahwah (2006)Google Scholar
  15. 15.
    Bowman, D.A., Kruijff, E., LaViola, J.J., Poupyrev, I.: 3D User Interfaces: Theory and Practice. Pearson Education, Boston (2005)Google Scholar
  16. 16.
    McGloin, R., Krcmar, M.: The Impact of Controller Naturalness on Spatial Presence, Gamer Enjoyment, and Perceived Realism in a Tennis Simulation Video Game. Presence Teleoperators Virtual Environ. 20, 309–324 (2011)CrossRefGoogle Scholar
  17. 17.
    Skalski, P., Tamborini, R., Shelton, A., Buncher, M., Lindmark, P.: Mapping the road to fun: natural video game controllers, presence, and game enjoyment. New Media Soc. 13, 224–242 (2011)CrossRefGoogle Scholar
  18. 18.
    Bowman, D.A., McMahan, R.P., Ragan, E.D.: Questioning naturalism in 3D user interfaces. Commun. ACM 55, 78 (2012)CrossRefGoogle Scholar
  19. 19.
    Bowman, D.A.: 3D User Interfaces. In: Soegaards, M., Dam, R.F. (eds.) The Encyclopedia of Human-Computer Interaction. The Interaction Design Foundation, Aarhus, Denmark (2014)Google Scholar
  20. 20.
    Gibson, J.J.: The Ecological Approach to Visual Prception. Houghton Mifflin, Boston (1979)Google Scholar
  21. 21.
    Surdick, R.T., Davis, E.T., King, R.A., Hodges, L.F.: The perception of distance in simulated visual displays: a comparison of the effectiveness and accuracy of multiple depth cues across viewing distances. Presence. 6, 513–531 (1997)Google Scholar
  22. 22.
    Posner, M.I., Snyder, C.R., Davidson, B.J.: Attention and the Detection of Signals. J. Exp. Psychol. Gen. 109, 73–91 (1980)CrossRefGoogle Scholar
  23. 23.
    Hagendorf, H., Krummenacher, J., Müller, H.J., Schubert, T.: Wahrnehmung und Aufmerksamkeit. Springer Medizin, Berlin (2011)CrossRefGoogle Scholar
  24. 24.
    King, R.D.: A brief history of stereoscopy. wiley interdisciplinary reviews. Comput. Stat. 5, 334–340 (2013)CrossRefGoogle Scholar
  25. 25.
    Pietschmann, D.: Spatial Mapping of Input and Output Spaces in Video Games. In: Schröter, F. (ed.) Games, Cognition, and Emotion. Hamburg University, Hamburg (2013)Google Scholar
  26. 26.
    Pietschmann, D., Liebold, B., Ohler, P.: Spatial mapping of mental interaction models and stereoscopic presentation. In: 2nd Conference on Research and Use of VR/AR Technologies, VAR2 Institute for Machine Tools and Production Processes, (2013)Google Scholar
  27. 27.
    Pietschmann, D., Liebold, B., Valtin, G., Ohler, P.: Taking space literally: reconceptualizing the effects of stereoscopic representation on user experience. Italian Journal of Game Studies 2, (2013). http://www.gamejournal.it/taking-space-literally-reconceptualizing-the-effects-of-stereoscopic-representation-on-user-experience/#.UUmGAb8purd
  28. 28.
    Pietschmann, D.: Relevanz räumlicher Informationen für die User Experience und Aufgabenleistung. Springer, Wiesbaden (2015)CrossRefGoogle Scholar
  29. 29.
    Schmitz, M., Endres, C., Butz, A.: A Survey of human-computer interaction design in science fiction movies. In: INTETAIN 2008 Proceedings of the 2nd international conference on Intelligent Technologies for Interactive Entertainment, Article 7. ICST (2007)Google Scholar
  30. 30.
    Underkoffler, J.: g-speak (point and touch interface demonstration) TED 2010. What the World Needs Now, Long Beach (2010)Google Scholar
  31. 31.
    Spielberg, S.: Minority report. pp. 145 min. Twentieth Century Fox Film Corporation, USA (2002)Google Scholar
  32. 32.
    Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3, 203–220 (1993)CrossRefGoogle Scholar
  33. 33.
    Atari Inc.: Space Race. Atari Inc., Sunnyvale, CA (1973)Google Scholar
  34. 34.
    Häkkinen, J., Pölönen, M., Takatalo, J., Nyman, G.: Simulator sickness in virtual display gaming: a comparison of stereoscopic and non-stereoscopic situations. In: 8th International Conference on Human Computer Interaction with Mobile Devices and Services Helsinki (2006)Google Scholar
  35. 35.
    Takatalo, J., Häkkinen, J., Kaistinen, J., Nyman, G.: User experience in digital games differences between laboratory and home. Simul. Gaming. 42, 656–673 (2010)Google Scholar
  36. 36.
    Rajae-Joordens, R.J.E., Langendijk, E., Wilinski, P., Heynderickx, I.: Added value of a multi-view auto-stereoscopic 3D display in gaming applications. In: 12th International Display Workshops in conjunction with Asia Display, Takamatsu (2005)Google Scholar
  37. 37.
    LaViola, J.J., Litwiller, T.: Evaluating the benefits of 3d stereo in modern video games. In: CHI 2011 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2345–2354. ACM (2011)Google Scholar
  38. 38.
    Davis, E.T., Hodges, L.F.: Human stereopsis, fusion, and stereoscopic virtual environments. In: Barfield, W., Furness, T.A.I. (eds.) Virtual Environments and Advances Interface Design, pp. 145–174. Oxford University Press, Oxford, GB (1995)Google Scholar
  39. 39.
    McMahan, R.P., Gorton, D., Gresock, J., McConnell, W., Bowman, D.A.: Separating the effects of level of immersion and 3D interaction techniques. 108 (2006)Google Scholar
  40. 40.
    Teather, R.J., Stuerzlinger, W.: Guidelines for 3D positioning techniques. In: Future Play 2007 Proceedings of the 2007 Conference on Future Play, pp. 61. ACM (2007)Google Scholar
  41. 41.
    Pietschmann, D., Rusdorf, S.: Matching levels of task difficulty for different modes of presentation in a VR table tennis simulation by using assistance functions and regression analysis. In: Shumaker, R., Lackey, S. (eds.) VAMR 2014, Part I. LNCS, vol. 8525, pp. 406–417. Springer, Heidelberg (2014)Google Scholar
  42. 42.
    Rusdorf, S., Brunnett, G., Lorenz, M., Winkler, T.: Real time interaction with a humanoid avatar in an immersive table tennis simulation. IEEE Trans. Visual Comput. Graphics 13, 15–25 (2007)CrossRefGoogle Scholar
  43. 43.
    Polyphony Digital Inc.: Gran Turismo 5. vol. PlayStation 3. Sony Computer Entertainment America, Foster City, CA (2010)Google Scholar
  44. 44.
    Vorderer, P., Wirth, W., Gouveia, F.R., Biocca, F., Saari, T., Jäncke, F., Böcking, S., Schramm, H., Gysbers, A., Hartmann, T., Klimmt, C., Laarni, J., Ravaja, N., Sacau, A., Baumgartner, T., Jäncke, P.: MEC spatial presence questionnaire (MEC-SPQ): Short documentation and instructions for application, report to the European Community, Project Presence: MEC (IST-2001–37661) (2004)Google Scholar
  45. 45.
    Laugwitz, B., Held, T., Schrepp, M.: Construction and evaluation of a user experience questionnaire. In: Holzinger, A. (ed.) USAB 2008. LNCS, vol. 5298, pp. 63–76. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  46. 46.
    McAuley, E., Duncan, T., Tammen, V.V.: Psychometric properties of the Intrinsic Motivation Inventory in a competitive sport setting: a confirmatory factor analysis. Res. Q. Exerc. Sport 60, 48–58 (1989)CrossRefGoogle Scholar
  47. 47.
    Bethesda Game Studios: The Elder Scrolls V: Skyrim. The Elder Scrolls, vol. PC. Bethesda Softworks LLC, Rockville, MD (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute for Media ResearchChemnitz University of TechnologyChemnitzGermany

Personalised recommendations