A Supersonic Crowdion in Mica

Ultradiscrete Kinks with Energy Between \(^{40}\)K Recoil and Transmission Sputtering
  • Juan F. R. ArchillaEmail author
  • Yuriy A. Kosevich
  • Noé Jiménez
  • Víctor J. Sánchez-Morcillo
  • Luis M. García-Raffi
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 221)


In this chapter we analyze in detail the behaviour and properties of the kinks found in an one dimensional model for the close packed rows of potassium ions in mica muscovite. The model includes realistic potentials obtained from the physics of the problem, ion bombardment experiments and molecular dynamics fitted to experiments. These kinks are supersonic and have an unique velocity and energy. They are ultradiscrete involving the translation of an interstitial ion, which is the reason they are called crowdions. Their energy is below the most probable source of energy, the decay of the \(^{40}\)K isotope and above the energy needed to eject an atom from the mineral, a phenomenon that has been observed experimentally.


Kinks Supersonic crowdion Magic mode Sinusoidal waveform Silicates Mica Muscovite ILMs Breathers 



J.F.R.A., V.S.M., and L.M.G.R. acknowledge financial support from the projects FIS2008-04848, FIS2011-29731-C02-02, and MTM2012-36740-C02-02 from Ministerio de Ciencia e Innovación (MICINN). All authors acknowledge Prof. F.M. Russell for ongoing discussions.


  1. 1.
    Archilla, J.F.R., Kosevich, Yu.A., Jiménez, N., Sánchez-Morcillo, V.J., García-Raffi, L.M.: Moving excitations in cation lattices. Ukr. J. Phys. 58(7), 646–656 (2013)Google Scholar
  2. 2.
    Archilla, J.F.R., Kosevich, Yu.A., Jiménez, N., Sánchez-Morcillo, V.J., García-Raffi, L.M.: Supersonic kinks in Coulomb lattices. In: Carretero-González, R. et al. (eds.) Localized Excitations in Nonlinear Complex Systems, pp. 317–331. Springer, New York (2014)Google Scholar
  3. 3.
    Archilla, J.F.R., Kosevich, Yu.A., Jiménez, N., Sánchez-Morcillo, V.J., García-Raffi, L.M.: Ultradiscrete kinks with supersonic speed in a layered crystal with realistic potentials. Phys. Rev. E 91, 022912 (2015)Google Scholar
  4. 4.
    Cameron, J.A., Singh, B.: Nuclear data sheets for A=40. Nucl. Data Sheets 102(2), 293–513 (2004)CrossRefGoogle Scholar
  5. 5.
    Collins, D.R., Catlow, C.R.A.: Computer simulation of structure and cohesive properties of micas. Am. Mineral. 77(11–12), 1172–1181 (1992)Google Scholar
  6. 6.
    Diaz, M., Farmer, V.C., Prost, R.: Characterization and assignment of far infrared absorption bands of K\(^+\) in muscovite. Clays Clay Miner. 48, 433–438 (2000)CrossRefGoogle Scholar
  7. 7.
    Durrani, S.A.: Nuclear tracks today: strengths, weaknesses, challenges. Rad. Meas 43, S26–S33 (2008)CrossRefGoogle Scholar
  8. 8.
    Engelkemeir, D.W., Flynn, K.F., Glendenin, L.E.: Positron emission in the decay of K\(^{40}\). Phys. Rev. 126(5), 1818–1822 (1962)CrossRefGoogle Scholar
  9. 9.
    Fleischer, R.: Nuclear tracks in science and technology. Tracks to Innovation. Springer, New York (2011)Google Scholar
  10. 10.
    Friesecke, G., Matthies, K.: Atomic-scale localization of high-energy solitary waves on lattices. Physica D 171(4), 211–220 (2002)CrossRefGoogle Scholar
  11. 11.
    Gedeon, O., Machacek, J., Liska, M.: Static energy hypersurface mapping of potassium cations in potassium silicate glasses. Phys. Chem. Glass. 43(5), 241–246 (2002)Google Scholar
  12. 12.
    Korteweg, D.J., de Vries, F.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39, 422–443 (1895).
  13. 13.
    Kosevich, A.M., Kovalev, A.S.: The supersonic motion of a crowdion. The one dimensional model with nonlinear interaction between the nearest neighbors. Solid State Commun. 12, 763–764 (1973)CrossRefGoogle Scholar
  14. 14.
    Kosevich, Yu.A.: Nonlinear sinusoidal waves and their superposition in anharmonic lattices. Phys. Rev. Lett. 71, 2058–2061 (1993)Google Scholar
  15. 15.
    Kosevich, Yu.A., Khomeriki, R., Ruffo, S.: Supersonic discrete kink-solitons and sinusoidal patterns with magic wave number in anharmonic lattices. Europhys. Lett. 66, 21–27 (2004)Google Scholar
  16. 16.
    Kudriavtsev, Y., Villegas, A., Godines, A., Asomoza, R.: Calculation of the surface binding energy for ion sputtered particles. Appl. Surf. Sci. 239(3–4), 273–278 (2005)CrossRefGoogle Scholar
  17. 17.
    Lide, D.R. (ed.): Handbook of Chemistry and Physics, 90th edn., Sect. 10, p. 203. CRC Press, Boca Raton (2010)Google Scholar
  18. 18.
    Milchev, A.: Breakup threshold of solitons in systems with nonconvex interactions. Phys. Rev. B 42, 6727–6729 (1990)CrossRefGoogle Scholar
  19. 19.
    Molerón, M., Leonard, A., Daraio, C.: Solitary waves in a chain of repelling magnets. J. Appl. Phys. 115(18), 184901 (2014)Google Scholar
  20. 20.
    Mougeot, X., Helmer, R.G.: LNE-LNHB/CEA-Table de Radionucléides, K-40 tables. (2012)
  21. 21.
    Pradler, J., Singh, B., Yavin, I.: On an unverified nuclear decay and its role in the DAMA experiment. Phys. Lett. B 720(4–5), 399–404 (2013)CrossRefGoogle Scholar
  22. 22.
    Price, P.B., Walker, R.M.: Observation of fossil particle tracks in natural micas. Nature 196, 732–734 (1962)CrossRefGoogle Scholar
  23. 23.
    Russell, F.M.: The observation in mica of tracks of charged particles from neutrino interactions. Phys. Lett. 25B, 298–300 (1967)CrossRefGoogle Scholar
  24. 24.
    Russell, F.M.: Tracks in mica caused by electron showers. Nature 216, 907–909 (1967)CrossRefGoogle Scholar
  25. 25.
    Russell, F.M.: Identification and selection criteria for charged lepton tracks in mica. Nucl. Tracks. Rad. Meas. 15, 41–44 (1988)CrossRefGoogle Scholar
  26. 26.
    Russell, F.M.: I saw a crystal. In: Archilla, J.F.R., Jiménez, N., Sánchez-Morcillo, V.J., García-Raffi, L.M. (eds.) Quodons in Mica: Nonlinear Localized Travelling Excitations in Crystals, pp. 475–559. Springer (2015)Google Scholar
  27. 27.
    Russell, F.M.: Tracks in mica, 50 years later. In: Archilla, J.F.R., Jiménez, N., Sánchez-Morcillo, V.J., García-Raffi, L.M. (eds.) Quodons in Mica: Nonlinear Localized Travelling Excitations in Crystals, pp. 3–33. Springer (2015)Google Scholar
  28. 28.
    Russell, F.M., Collins, D.R.: Lattice-solitons and non-linear phenomena in track formation. Rad. Meas 25, 67–70 (1995)CrossRefGoogle Scholar
  29. 29.
    Russell, F.M., Collins, D.R.: Lattice-solitons in radiation damage. Nucl. Instrum. Meth. B 105, 30–34 (1995)CrossRefGoogle Scholar
  30. 30.
    Russell, F.M., Eilbeck, J.C.: Evidence for moving breathers in a layered crystal insulator at 300 K. Europhys. Lett. 78, 10004 (2007)Google Scholar
  31. 31.
    Russell, F.M., Eilbeck, J.C.: Persistent mobile lattice excitations in a crystalline insulator. Discret. Contin. Dyn. S.-S 4, 1267–1285 (2011)Google Scholar
  32. 32.
    Savin, A.V.: Supersonic regimes of motion of a topological soliton. Sov. Phys. JETP 81(3), 608–613 (1995)Google Scholar
  33. 33.
    Schlößer, D., Kroneberger, K., Schosnig, M., Russell, F.M., Groeneveld, K.O.: Search for solitons in solids. Rad. Meas 23, 209–213 (1994)CrossRefGoogle Scholar
  34. 34.
    Sinev, V.V., Bezrukov, L.B., Litvinovich, E.A., Machulin, I.N., Skorokhvatov, M.D., Sukhotin, S.V.: Looking for antineutrino flux from 40K with large liquid scintillator detector. Phys. Part. Nuclei 46(2), 186–189 (2015)CrossRefGoogle Scholar
  35. 35.
    Steeds, J.W., Russell, F.M., Vine, W.J.: Formation of epidote fossil positron tracks in mica. Optik 92, 149–154 (1993)Google Scholar
  36. 36.
    Ziegler, J.F., Biersack, J.P., Ziegler, M.D.: SRIM—The Stopping and Range of Ions in Matter. James Ziegler, Chester (2008)Google Scholar
  37. 37.
    Zolotaryuk, Y., Eilbeck, J.C., Savin, A.V.: Bound states of lattice solitons and their bifurcations. Physica D 108, 81–91 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Juan F. R. Archilla
    • 1
    Email author
  • Yuriy A. Kosevich
    • 2
  • Noé Jiménez
    • 3
  • Víctor J. Sánchez-Morcillo
    • 3
  • Luis M. García-Raffi
    • 4
  1. 1.Group of Nonlinear PhysicsDepartamento de Física Aplicada I, Universidad de SevillaSevillaSpain
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Instituto de Investigación para la Gestión Integrada de las Zonas CosterasUniversidad Politécnica de ValenciaGrao de GandiaSpain
  4. 4.Instituto Universitario de Matemática Pura y AplicadaUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations