Advertisement

Extreme Waves and Branching Flows in Optical Media

  • Marios Mattheakis
  • George P. Tsironis
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 221)

Abstract

We address light propagation properties in complex media consisting of random distributions of lenses that have specific focusing properties. We present both analytical and numerical techniques that can be used to study emergent properties of light organization in these media. As light propagates, it experiences multiple scattering leading to the formation of light bundles in the form of branches; these are random yet occur systematically in the medium, particularly in the weak scattering limit. On the other hand, in the strong scattering limit we find that coalescence of branches may lead to the formation of extreme waves of the “rogue wave” type. These waves appear at specific locations and arise in the linear as well as in the nonlinear regimes. We present both the weak and strong scattering limit and show that these complex phenomena can be studied numerically and analytically through simple models.

Keywords

Rogue Wave Time DomainFinite Difference Time Domain Method Extreme Wave Scintillation Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We acknowledge useful discussions with J.J. Metzger, R. Fleischmann and G. Neofotistos. This work was supported in part by the European Union program FP7-REGPOT-2012-2013-1 under grant agreement 316165.

References

  1. 1.
    Akhmediev, N., Dudley, J.M., Solli, D.R., Turitsyn, S.K.: Recent progress in investigating optical rogue waves. J. Opt. 15(6), 060201 (2013)Google Scholar
  2. 2.
    Andrews, L.C., Phillips, R.L., Hopen, C.Y., Al-Habash, M.A.: Theory of optical scintillation. J. Opt. Soc. Am. A 16(6), 1417–1429 (1999)CrossRefGoogle Scholar
  3. 3.
    Bacha, M., Boukhalfa, S., Tribeche, M.: Ion-acoustic rogue waves in a plasma with a q-nonextensive electron velocity distribution. Astrophys. Space Sci. 341(2), 591–595 (2012)Google Scholar
  4. 4.
    Barkhofen, S., Metzger, J.J., Fleischmann, R., Kuhl, U., Stöckmann, H.J.: Experimental observation of a fundamental length scale of waves in random media. Phys. Rev. Lett. 111(18), 183902 (2013)Google Scholar
  5. 5.
    Blanc-Benon, P., Juvé, D., Comte-Bellot, G.: Occurrence of caustics for high-frequency acoustic waves propagating through turbulent fields. Theor. Comp. Fluid Dyn. 2(5–6), 271–278 (1991)CrossRefGoogle Scholar
  6. 6.
    Born, M., Wolf, E.: Principles of Optics. Pergamon, Oxford (1980)Google Scholar
  7. 7.
    Dudley, J.M., Dias, F., Erkintalo, M., Genty, G.: Instabilities, breathers and rogue waves in optics. Nat. Photonics, 8, 755–764 (2014)Google Scholar
  8. 8.
    Elgin, J.N.: The Fokker-Planck equation: methods of solution and applications. J. Mod. Opt. 31(11), 1206–1207 (1984)Google Scholar
  9. 9.
    Gardiner, C.W.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer, Berlin (1986)Google Scholar
  10. 10.
    Heller, E.J., Kaplan, L., Dahlen, A.: Refraction of a Gaussian seaway. J. Geophys. Res.-Oceans 113(C9) (2008)Google Scholar
  11. 11.
    Höhmann, R., Kuhl, U., Stöckmann, H.J., Kaplan, L., Heller, E.J.: Freak waves in the linear regime: a microwave study. Phys. Rev. Lett. 104(9), 093901 (2010)Google Scholar
  12. 12.
    Kaplan, L.: Statistics of branched flow in a weak correlated random potential. Phys. Rev. Lett. 89(18), 184103 (2002)Google Scholar
  13. 13.
    Kline, M.: Electromagnetic theory and geometrical optics. In: Tech. Rep. EM-171, Courant Institute of Mathematical Sciences, New York University (1962)Google Scholar
  14. 14.
    Klyatskin, V.I.: Caustics in random media. Wave Random Media 3(2), 93–100 (1993)CrossRefGoogle Scholar
  15. 15.
    Lakshminarayanan, V., Ghatak, A., Thyagarajan, K.: Lagrangian Optics. Springer, New York (2002)CrossRefGoogle Scholar
  16. 16.
    Luneburg, R.K.: Mathematical Theory of Optics. University of California Press (1966)Google Scholar
  17. 17.
    Maluckov, A., Hadžievski, Lj., Lazarides, N., Tsironis, G.P.: Extreme events in discrete nonlinear lattices. Phys. Rev. E 79(2), 025601 (2009)Google Scholar
  18. 18.
    Maluckov, A., Lazarides, N., Tsironis, G.P., Hadžievski, Lj.: Extreme events in two-dimensional disordered nonlinear lattices. Physica D 252, 59–64 (2013)Google Scholar
  19. 19.
    Mattheakis, M.: Electromagnetic wave propagation in gradient index metamaterials, plasmonic systems and optical fiber networks. In: Ph.D. Thesis, University of Crete, Department of Physics, Greece (2014)Google Scholar
  20. 20.
    Mattheakis, M.M., Tsironis, G.P., Kovanis, V.I.: Luneburg lens waveguide networks. J. Opt. 14(11), 114006 (2012)Google Scholar
  21. 21.
    Metzger, J.J.: Branched flow and caustics in two-dimensional random potentials and magnetic fields. In: Ph.D. Thesis, Max-Planck Institut für Dynamik und Selbstorganisation, Göttingen, Germany (2010)Google Scholar
  22. 22.
    Metzger, J.J., Fleischmann, R., Geisel, T.: Universal statistics of branched flows. Phys. Rev. Lett. 105(2), 020601 (2010)Google Scholar
  23. 23.
    Montina, A., Bortolozzo, U., Residori, S., Arecchi, F.T.: Non-gaussian statistics and extreme waves in a nonlinear optical cavity. Phys. Rev. Lett. 103(17), 173901 (2009)Google Scholar
  24. 24.
    Ni, X., Wang, W.X., Lai, Y.C.: Origin of branched wave structures in optical media and long-tail algebraic intensity distribution. Europhys. Lett. 96(4), 44002 (2011)Google Scholar
  25. 25.
    Ockendon, H., Ockendon, J.R.: Waves and Compressible Flow. Springer, New York (2004)Google Scholar
  26. 26.
    Orefice, A., Giovanelli, R., Ditto, D.: Complete Hamiltonian description of wave-like features in classical and quantum physics. Found. Phys. 39(3), 256–272 (2009)CrossRefGoogle Scholar
  27. 27.
    Perakis, F., Mattheakis, M., Tsironis, G.P.: Small-world networks of optical fiber lattices. J. Opt. 16(10), 102003 (2014)Google Scholar
  28. 28.
    Riboli, F., Caselli, N., Vignolini, S., Intonti, F., Vynck, K., Barthelemy, P., Gerardino, A., Balet, L., Li, L.H., Fiore, A., Gurioli, M., Wiersma D.S.: Engineering of light confinement in strongly scattering disordered media. Nature materials, 13, 720–725 (2014)Google Scholar
  29. 29.
    Schwartz, T., Bartal, G., Fishman, S., Segev, M.: Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446(7131), 52–55 (2007)CrossRefGoogle Scholar
  30. 30.
    Segev, M., Silberberg, Y., Christodoulides, D.N.: Anderson localization of light. Nat. Photonics 7(3), 197–204 (2013)CrossRefGoogle Scholar
  31. 31.
    Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450(7172), 1054–1057 (2007)Google Scholar
  32. 32.
    Smolyaninova, V.N., Lahneman, D., Adams, T., Gresock, T., Zander, K., Jensen, C., Smolyaninov, I.I.: Experimental demonstration of Luneburg waveguides. Photonics 2(2), 440–448 (2015)Google Scholar
  33. 33.
    Stavroudis, O.N.: The Mathematics of Geometrical and Physical Optics: The k-function and Its Ramifications. Wiley (2006)Google Scholar
  34. 34.
    Sullivan, D.: Electromagnetic Simulation Using the FDTD Method, Second Edition, New York, IEEE Press/John Wiley, (2013)Google Scholar
  35. 35.
    Taflove, A.: Application of the finite-difference time-domain method to sinusoidal steady state electromagnetic penetration problem. IEEE Transactions on Electromagnetic Compatibility 22(3) 191–202 (1980)Google Scholar
  36. 36.
    Toroğlu, G., Sevgi, L.: Finite-Difference Time-Domain (FDTD) MATLAB codes for first- and second-order EM differential equations. IEEE Antennas and Propagation Magazine, 56(2), 221–239(2014)Google Scholar
  37. 37.
    Topinka, M.A., LeRoy, B.J., Westervelt, R.M., Shaw, S.E.J., Fleischmann, R., Heller, E.J., Maranowski, K.D., Gossard, A.C.: Coherent branched flow in a two-dimensional electron gas. Nature 410(6825), 183–186 (2001)CrossRefGoogle Scholar
  38. 38.
    Wang, Y.Y., Li, J.T., Dai, C.Q., Chen, X.F., Zhang, J.F.: Solitary waves and rogue waves in a plasma with nonthermal electrons featuring Tsallis distribution. Phys. Lett. A 377(34), 2097–2104 (2013)CrossRefGoogle Scholar
  39. 39.
    Wolfson, M.A., Tappert, F.D.: Study of horizontal multipaths and ray chaos due to ocean mesoscale structure. J. Opt. Soc. Am. 107(1), 154–162 (2000)Google Scholar
  40. 40.
    Wolfson, M.A., Tomsovic, S.: On the stability of long-range sound propagation through a structured ocean. J. Opt. Soc. Am. 109(6), 2693–2703 (2001)Google Scholar
  41. 41.
    Ying, L.H., Zhuang, Z., Heller, E.J., Kaplan, L.: Linear and nonlinear rogue wave statistics in the presence of random currents. Nonlinearity 24(11), 67 (2011)CrossRefGoogle Scholar
  42. 42.
    Zaitsev, V.F., Polyanin, A.D.: Handbook of Exact Solutions for Ordinary Differential Equations. CRC Press (2002)Google Scholar
  43. 43.
    Zhen-Ya, Y.: Financial rogue waves. Commun. Theor. Phys. 54(5), 947 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Crete Center of Quantum Complexity and Nanotechnology (CCQCN), Department of PhysicsUniversity of CreteHeraklionGreece
  2. 2.Institute of Electronic Structure and Laser, Foundation for Research and Technology—Hellas (FORTH)HeraklionGreece
  3. 3.Department of Physics and School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA
  4. 4.Department of PhysicsNazarbayev UniversityAstanaRepublic of Kazakhstan

Personalised recommendations