The Origin of Defects Induced in Ultra-Pure Germanium by Electron Beam Deposition

  • Sergio M. M. CoelhoEmail author
  • Juan F. R. Archilla
  • F. Danie Auret
  • Jackie M. Nel
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 221)


The creation of point defects in the crystal lattices of various semiconductors by subthreshold events has been reported on by a number of groups. These observations have been made in great detail using sensitive electrical techniques but there is still much that needs to be clarified. Experiments using Ge and Si were performed that demonstrate that energetic particles, the products of collisions in the electron beam, were responsible for the majority of electron-beam deposition (EBD) induced defects in a two-step energy transfer process. Lowering the number of collisions of these energetic particles with the semiconductor during metal deposition was accomplished using a combination of static shields and superior vacuum resulting in devices with defect concentrations lower than \( 10^{11}\) cm\(^{-3}\), the measurement limit of our deep level transient spectroscopy (DLTS) system. High energy electrons and photons that samples are typically exposed to were not influenced by the shields as most of these particles originate at the metal target thus eliminating these particles as possible damage causing agents. It remains unclear how packets of energy that can sometimes be as small of 2 eV travel up to a \(\upmu \)m into the material while still retaining enough energy, that is, in the order of 1 eV, to cause changes in the crystal. The manipulation of this defect causing phenomenon may hold the key to developing defect free material for future applications.


Energetic Particle Defect Concentration Phonon Spectrum Deep Level Transient Spectroscopy Harmonic Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This project has been financed by the South African National Research Foundation. J.F.R.A. acknowledges financial support from the project FIS2008-04848 from Ministerio de Ciencia e Innovación (MICINN).


  1. 1.
    Archilla, J.F.R., Coelho, S.M.M., Auret, F.D., Dubinko, V.I., Hizhnyakov, V.: Long range annealing of defects in germanium by low energy plasma ions. Physica D 297, 56–61 (2015)CrossRefGoogle Scholar
  2. 2.
    Archilla, J.F.R., Coelho, S.M.M., Auret, F.D., Dubinko, V.I., Hizhnyakov, V., Nyamhere, C.: Experimental observation of intrinsic localized modes in germanium. In: Archilla, J.F.R., Jiménez, N., Sánchez-Morcillo, V.J., García-Raffi L.M. (eds.) Quodons in Mica: Nonlinear Localized Travelling Excitations in Crystals, pp. 343–362. Springer (2015)Google Scholar
  3. 3.
    Archilla, J.F.R., Cuevas, J., Alba, M.D., Naranjo, M., Trillo, J.M.: Discrete breathers for understanding reconstructive mineral processes at low temperatures. J. Phys. Chem. B 110(47), 24112–24120 (2006)CrossRefGoogle Scholar
  4. 4.
    Archilla, J.F.R., Cuevas, J., Romero, F.R.: Effect of breather existence on reconstructive transformations in mica muscovite. AIP Conf. Proc. 982(1), 788–791 (2008)CrossRefGoogle Scholar
  5. 5.
    Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Saunders College Publishing, Philadelphia (1976)Google Scholar
  6. 6.
    Aukerman, L.W.: Radiation effects. In: Physics of III-V compounds, V. 4, Semiconductors and Semimetals, pp. 343–409. Elsevier (1968)Google Scholar
  7. 7.
    Auret, F.D., Coelho, S.M.M., Nel, J.M., Meyer, W.E.: Electrical characterization of defects introduced in n-Si during electron beam deposition of Pt. Phys. Status Solidi A 209(10), 1926–1933 (2012)CrossRefGoogle Scholar
  8. 8.
    Auret, F.D., Meyer, W.E., Coelho, S.M.M., Hayes, M.: Electrical characterization of defects introduced during electron beam deposition of Pd schottky contacts on n-type Ge. Appl. Phys. Lett. 88(24), 242110–4 (2006)Google Scholar
  9. 9.
    Auret, F.D., Mooney, P.M.: Deep levels introduced during electron-beam deposition of metals on n-type silicon. J. Appl. Phys. 55(4), 988–993 (1984)CrossRefGoogle Scholar
  10. 10.
    Bauer, W., Sosin, A.: Threshold displacement energies and subthreshold displacements in copper and gold near \(10^\circ \)k. J. Appl. Phys. 35(3), 703–709 (1964)CrossRefGoogle Scholar
  11. 11.
    Budde, M., Bech Nielsen, B., Keay, J.C., Feldman, L.C.: Vacancy hydrogen complexes in group-IV semiconductors. Physica B 273–274, 208–211 (1999)Google Scholar
  12. 12.
    Chen, Y., MacKay, J.W.: Subthreshold electron damage in n-type germanium. Phys. Rev. 167(3), 745–753 (1968)CrossRefGoogle Scholar
  13. 13.
    Coelho, S.M.M., Auret, F.D., Janse van Rensburg, P.J., Nel, J.: Electrical characterization of defects introduced in n-Ge during electron beam deposition or exposure. J. Appl. Phys. 114(17), 173708 (2013)Google Scholar
  14. 14.
    Coomer, B.J., Leary, P., Budde, M., Bech Nielsen, B., Jones, R., Öberg, S., Briddon, P.: Vacancy-hydrogen complexes in germanium. Mater. Sci. Eng. B 58(1–2), 36–38 (1999)Google Scholar
  15. 15.
    Corbett, J.W., Bourgoin, J.C.: Defect creation in semiconductors. In: Crawford, J.H., Jr., Slifkin, L.M. (eds.) Point Defects in Solids, vol. 2, Semiconductors and Molecular Crystals, pp. 1–161. Springer, New York (1975)Google Scholar
  16. 16.
    Dobaczewski, L., Kaczor, P., Hawkins, I.D., Peaker, A.R.: Laplace transform deep-level transient spectroscopic studies of defects in semiconductors. J. Appl. Phys. 76(1), 194–198 (1994)CrossRefGoogle Scholar
  17. 17.
    Dubinko, V.I., Archilla, J.F.R., Dmitriev, S.V., Hizhnyakov, V.: Rate theory of acceleration of defect annealing driven by discrete breathers. In: Archilla, J.F.R., Jiménez, N., Sánchez-Morcillo, V.J., García-Raffi, L.M. (eds.) Quodons in Mica: Nonlinear Localized Travelling Excitations in Crystals, pp. 381–398. Springer (2015)Google Scholar
  18. 18.
    Dubinko, V.I., Dubinko, A.V.: Modification of reaction rates under irradiation of crystalline solids: contribution from intrinsic localized modes. Nucl. Instrum. Meth. B 303, 133–135 (2013)CrossRefGoogle Scholar
  19. 19.
    Dubinko, V.I., Guglya, A.G., Donnelly, S.E.: Radiation-induced formation, annealing and ordering of voids in crystals: theory and experiment. Nucl. Instrum. Meth. B 269(14), 1634–1639 (2011)CrossRefGoogle Scholar
  20. 20.
    Dubinko, V.I., Selyshchev, P.A., Archilla, J.F.R.: Reaction-rate theory with account of the crystal anharmonicity. Phys. Rev. E 83, 041124 (2011)Google Scholar
  21. 21.
    Einstein, A.: The Planck theory of radiation and the theory of specific heat. Ann. Phys. 22(1), 180–190 (1906)CrossRefGoogle Scholar
  22. 22.
    Graper, E.B.: Electron beam evaporation. In: Glocker, D., Shah, S. (eds.) Handbook of Thin Film Process Technology, chap. A1.2. Taylor & Francis, Bristol, UK and Philadelphia, USA (1996)Google Scholar
  23. 23.
    Hass, M., Hizhnyakov, V., Shelkan, A., Klopov, M., Sievers, A.J.: Prediction of high-frequency intrinsic localised modes in Ni and Nb. Phys. Rev. B 84, 144303 (2011)Google Scholar
  24. 24.
    Hizhnyakov, V., Haas, M., Shelkan, A., Klopov, M.: Theory and md simulations of intrinsic localized modes and defect formation in solids. Phys. Scr. 89(4), 044003 (2014)Google Scholar
  25. 25.
    Holmström, E., Nordlund, K., Kuronen, A.: Threshold defect production in germanium determined by density functional theory molecular dynamics simulations. Phys. Scr. 81, 035601 (2010)Google Scholar
  26. 26.
    Karazhanov, S.Z.: Mechanisms for the anomalous dependence of carrier lifetime on injection level and photoconductance on light intensity. J. Appl. Phys. 89(1), 332–335 (2001)CrossRefGoogle Scholar
  27. 27.
    Kleinhenz, R., Mooney, P.M., Schneider, C.P., Paz, O.: Defects produced in silicon and GaAs during E-beam evaporation of metals. J. Electron. Mater. 14a, 627–633 (1985)Google Scholar
  28. 28.
    Klose, H.A., Thiele, P., Zinnow, S.: Modification of near-surface regions in Si by low energy particles. Surf. Coat. Technol. 59(1–3), 221–225 (1993)CrossRefGoogle Scholar
  29. 29.
    Kosevich, A.M., Kovalev, A.S.: Self-localization of vibrations in a one-dimensional anharmonic chain. Sov. Phys. JETP 40(5), 891–896 (1974)Google Scholar
  30. 30.
    Lang, D.V.: Deep-level transient spectroscopy: a new method to characterize traps in semiconductors. J. Appl. Phys. 45(7), 3023–3032 (1974)CrossRefGoogle Scholar
  31. 31.
    van Lint, V., Flanagan, T., Leadon, R., Naber, J.: Mechanisms of radiation effects in electronic materials, vol. 1. Wiley-Interscience, New York (1980)Google Scholar
  32. 32.
    MacKay, R.S., Aubry, S.: Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators. Nonlinearity 7, 1623 (1994)CrossRefGoogle Scholar
  33. 33.
    Naber, J.A., James, H.M.: Effect of hydrogen on the displacement process in Ge. Bull. Am. Phys. Soc. 2(6), 303 (1961)Google Scholar
  34. 34.
    Piazza, F., Lepri, S., Livi, R.: Cooling nonlinear lattices toward energy localization. Chaos 13(2), 637–645 (2003)CrossRefGoogle Scholar
  35. 35.
    Reinhold, E., Faber, J.: Large area electron beam physical vapor deposition (EB-PVD) and plasma activated electron beam (EB) evaporation - Status and prospects. Surf. Coat. Technol. 206(7), 1653–1659 (2011)CrossRefGoogle Scholar
  36. 36.
    Russell, F.M., Eilbeck, J.C.: Persistent mobile lattice excitations in a crystalline insulator. Discret. Contin. Dyn. S.-S 4, 1267–1285 (2011)Google Scholar
  37. 37.
    Russell, F.M., Zolotaryuk, Y., Eilbeck, J.C., Dauxois, T.: Moving breathers in a chain of magnetic pendulums. Phys. Rev. B 55, 6304 (1997)CrossRefGoogle Scholar
  38. 38.
    Sánchez-Rey, B., James, G., Cuevas, J., Archilla, J.F.R.: Bright and dark breathers in Fermi-Pasta-Ulam lattices. Phys. Rev. B 70, 014301–1–014301–10 (2004)Google Scholar
  39. 39.
    Sievers, A.J., Takeno, S.: Intrinsic localized modes in anharmonic crystals. Phys. Rev. Lett. 61, 970–973 (1988)CrossRefGoogle Scholar
  40. 40.
    Voulgarakis, N.K., Hadjisavvas, S., Kelires, P.C., Tsironis, G.P.: Computational investigation of intrinsic localization in crystalline Si. Phys. Rev. B 69, 113201(1–4) (2004)Google Scholar
  41. 41.
    Ziegler, J.F., Biersack, J.P., Littmark, U.: The Stopping and Range of Ions in Matter, vol. 1. Pergamon, New York (1985)Google Scholar
  42. 42.
    Ziegler, J.F., Biersack, J.P., Ziegler, M.D.: SRIM—The Stopping and Range of Ions in Matter. Published by James Ziegler, Chester, Maryland (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sergio M. M. Coelho
    • 1
    Email author
  • Juan F. R. Archilla
    • 2
  • F. Danie Auret
    • 1
  • Jackie M. Nel
    • 1
  1. 1.Department of PhysicsUniversity of PretoriaPretoriaSouth Africa
  2. 2.Group of Nonlinear PhysicsDepartamento de Física Aplicada I, Universidad de SevillaSevillaSpain

Personalised recommendations