Skip to main content

Programmed Cell Death in Plant Immunity: Cellular Reorganization, Signaling, and Cell Cycle Dependence in Cultured Cells as a Model System

  • Chapter
Plant Programmed Cell Death

Abstract

Plants have evolved various means for controlled and organized cell destruction, known as programmed cell death (PCD). PCD is a crucial event in plant immunity against microbial infection that prevents the spread of pathogens. Plants lack homologs of most apoptosis-related genes in animals and have evolved specific mechanisms for PCD. Cryptogein-triggered defense responses and PCD in tobacco BY-2 cells are a useful simple model system to monitor cellular events in which most plant defense responses can be mimicked. Recent live cell imaging techniques have revealed the dynamic features and significant roles of the cytoskeleton, such as actin microfilaments and microtubules, as well as the vacuole, an organelle occupying most of the cell volume, during defense responses and PCD. Both the production of reactive oxygen species (ROS) by NADPH oxidase and its temporal pattern have been suggested to play a crucial role in triggering and regulating PCD. Prior to the induction of defense responses and PCD, cell cycle arrest is induced either at G1 or G2 phase. In turn, defense signaling and responses including PCD are dependent on cell cycle phases and are only induced following cell cycle arrest. Here, we overview the dynamic reorganization of the cellular architecture, signaling events, and interrelationship between the cell cycle and innate immunity/PCD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bozhkov PV, Lam E (2011) Green death: revealing programmed cell death in plants. Cell Death Differ 18:1239–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147:742–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Teng X, Cheng WC, Qi B et al (2011) Gene-dependent cell death in yeast. Cell Death Dis 2:e188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pennell RI, Lamb C (1997) Programmed cell death in plants. Plant Cell 9:1157–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Greenberg JT (1996) Programmed cell death: a way of life for plants. Proc Natl Acad Sci U S A 93:12094–12097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wei CX, Lan SY, Xu ZX (2002) Ultrastructural features of nucleus degradation during programmed cell death of starchy endosperm cells in rice. Acta Bot Sin 44:1396–1402

    Google Scholar 

  7. Hanamata S, Kurusu T, Kuchitsu K (2014) Roles of autophagy in male reproductive development in plants. Front Plant Sci 5:457

    Google Scholar 

  8. Kurusu T, Kimura S, Tada Y et al (2013) Plant signaling networks involving reactive oxygen species and Ca2+. In: Suzuki M, Yamamoto S (eds) Handbook on reactive oxygen species (ROS): formation mechanisms, physiological roles and common harmful effects. Nova Science, New York, pp 315–324

    Google Scholar 

  9. Heath MC (2000) Hypersensitive response-related death. Plant Mol Biol 44:321–334

    Article  CAS  PubMed  Google Scholar 

  10. Mur LA, Kenton P, Lloyd AJ et al (2008) The hypersensitive response; the centenary is upon us but how much do we know? J Exp Bot 59:501–520

    Article  CAS  PubMed  Google Scholar 

  11. Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11:539–548

    Article  CAS  PubMed  Google Scholar 

  12. Cacas JL (2010) Devil inside: does plant programmed cell death involve the endomembrane system? Plant Cell Environ 33:1453–1473

    CAS  PubMed  Google Scholar 

  13. Reape TJ, McCabe PF (2010) Apoptotic-like regulation of programmed cell death in plants. Apoptosis 15:249–256

    Article  CAS  PubMed  Google Scholar 

  14. Coll NS, Epple P, Dangl JL (2011) Programmed cell death in the plant immune system. Cell Death Differ 18:1247–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kobayashi I, Kobayashi Y, Hardham AR (1994) Dynamic reorganization of microtubules and microfilaments in flax cells during the resistance response to flax rust infection. Planta 195:237–247

    Article  CAS  Google Scholar 

  16. Skalamera D, Heath MC (1996) Cellular mechanisms of callose deposition in response to fungal infection or chemical damage. Can J Bot 74:1236–1242

    Article  CAS  Google Scholar 

  17. Kobayashi Y, Kobayashi I, Funaki Y et al (1997) Dynamic reorganization of microfilaments and microtubules is necessary for the expression of non-host resistance in barley coleoptile cells. Plant J 11:525–537

    Article  CAS  Google Scholar 

  18. Takemoto D, Jones DA, Hardham AR (2003) GFP-tagging of cell components reveals the dynamics of subcellular re-organization in response to infection of Arabidopsis by oomycete pathogens. Plant J 33:775–792

    Article  CAS  PubMed  Google Scholar 

  19. Koh S, André A, Edwards H et al (2005) Arabidopsis thaliana subcellular responses to compatible Erysiphe cichoracearum infections. Plant J 44:516–529

    Article  CAS  PubMed  Google Scholar 

  20. Reichheld JP, Vernoux T, Lardon F et al (1999) Specific checkpoints regulate plant cell cycle progression in response to oxidative stress. Plant J 17:647–656

    Article  CAS  Google Scholar 

  21. Sano T, Higaki T, Handa K et al (2006) Calcium ions are involved in the delay of plant cell cycle progression by abiotic stresses. FEBS Lett 580:597–602

    Article  CAS  PubMed  Google Scholar 

  22. Bailey-Serres J, Voesenek LA (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  CAS  PubMed  Google Scholar 

  23. De Schutter K, Joubès J, Cools T et al (2007) Arabidopsis WEE1 kinase controls cell cycle arrest in response to activation of the DNA integrity checkpoint. Plant Cell 19:211–225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Mannuss A, Trapp O, Puchta H (2012) Gene regulation in response to DNA damage. Biochim Biophys Acta 1819:154–165

    Article  CAS  PubMed  Google Scholar 

  25. Gómez-Gómez L, Felix G, Boller T (1999) A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J 18:277–284

    Article  PubMed  Google Scholar 

  26. Logemann E, Wu SC, Schröder J et al (1995) Gene activation by UV light, fungal elicitor or fungal infection in Petroselinum crispum is correlated with repression of cell cycle-related genes. Plant J 8:865–876

    Article  CAS  PubMed  Google Scholar 

  27. Suzuki K, Nishiuchi T, Nakayama Y et al (2006) Elicitor-induced down-regulation of cell cycle-related genes in tobacco cells. Plant Cell Environ 29:183–191

    Article  CAS  PubMed  Google Scholar 

  28. Kawaguchi Y, Nishiuchi T, Kodama H et al (2012) Fungal elicitor-induced retardation and its restoration of root growth in tobacco seedlings. Plant Growth Regul 66:59–68

    Article  CAS  Google Scholar 

  29. Yoshiyama K, Conklin PA, Huefner ND et al (2009) Suppressor of gamma response 1 (SOG1) encodes a putative transcription factor governing multiple responses to DNA damage. Proc Natl Acad Sci U S A 106:12843–12848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gross P, Julius C, Schmelzer E et al (1993) Translocation of cytoplasm and nucleus to fungal penetration sites is associated with depolymerization of microtubules and defense gene activation in infected, cultured parsley cells. EMBO J 12:1735–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lecourieux D, Mazars C, Pauly N et al (2002) Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. Plant Cell 14:2627–2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kadota Y, Goh T, Tomatsu H et al (2004) Cryptogein-induced initial events in tobacco BY-2 cells: pharmacological characterization of molecular relationship among cytosolic Ca2+ transients, anion efflux and production of reactive oxygen species. Plant Cell Physiol 45:160–170

    Article  CAS  PubMed  Google Scholar 

  33. Kadota Y, Kuchitsu K (2006) Regulation of elicitor-induced defense responses by Ca2+ channels and the cell cycle in tobacco BY-2 cells. In: Nagata T, Matsuoka K, Inze D (eds) Biotechnology in agriculture and forestry 58 Tobacco BY-2 cells: from cellular dynamics to omics. Springer, Berlin, pp 207–221

    Chapter  Google Scholar 

  34. Franklin-Tong VE, Gourlay CW (2008) A role for actin in regulating apoptosis/programmed cell death: evidence spanning yeast, plants and animals. Biochem J 413:389–404

    Article  CAS  PubMed  Google Scholar 

  35. Higaki T, Kurusu T, Hasezawa S et al (2011) Dynamic intracellular reorganization of cytoskeletons and the vacuole in defense responses and hypersensitive cell death in plants. J Plant Res 124:315–324

    Article  PubMed  Google Scholar 

  36. Kutsuna N, Hasezawa S (2002) Dynamic organization of vacuolar and microtubule structures during cell cycle progression in synchronized tobacco BY-2 cells. Plant Cell Physiol 43:965–973

    Article  CAS  PubMed  Google Scholar 

  37. Kumagai F, Yoneda A, Tomida T et al (2001) Fate of nascent microtubules organized at the M/G1 interface, as visualized by synchronized tobacco BY-2 cells stably expressing GFP-tubulin: time-sequence observations of the reorganization of cortical microtubules in living plant cells. Plant Cell Physiol 42:723–732

    Article  CAS  PubMed  Google Scholar 

  38. Sano T, Higaki T, Oda Y et al (2005) Appearance of actin microfilament ‘twin peaks’ in mitosis and their function in cell plate formation, as visualized in tobacco BY-2 cells expressing GFP-fimbrin. Plant J 44:595–605

    Article  CAS  PubMed  Google Scholar 

  39. Higaki T, Goh T, Hayashi T et al (2007) Elicitor-induced cytoskeletal rearrangement relates to vacuolar dynamics and execution of cell death: in vivo imaging of hypersensitive cell death in tobacco BY-2 cells. Plant Cell Physiol 48:1414–1425

    Article  CAS  PubMed  Google Scholar 

  40. Higaki T, Kadota Y, Goh T et al (2008) Vacuolar and cytoskeletal dynamics during elicitor-induced programmed cell death in tobacco BY-2 cells. Plant Signal Behav 3:700–703

    Article  PubMed  PubMed Central  Google Scholar 

  41. Marty F (1999) Plant vacuoles. Plant Cell 11:587–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Oda Y, Higaki T, Hasezawa S et al (2009) New insights into plant vacuolar structure and dynamics. Int Rev Cell Mol Biol 277:103–135

    Article  CAS  PubMed  Google Scholar 

  43. Jones AM (2001) Programmed cell death in development and defense. Plant Physiol 125:94–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hara-Nishimura I, Hatsugai N (2011) The role of vacuole in plant cell death. Cell Death Differ 18:1298–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hatsugai N, Kuroyanagi M, Yamada K et al (2004) A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science 305:855–858

    Article  CAS  PubMed  Google Scholar 

  46. Hatsugai N, Kuroyanagi M, Nishimura M et al (2006) A cellular suicide strategy of plants: vacuole-mediated cell death. Apoptosis 11:905–911

    Article  CAS  PubMed  Google Scholar 

  47. Hatsugai N, Iwasaki S, Tamura K et al (2009) A novel membrane fusion-mediated plant immunity against bacterial pathogens. Genes Dev 23:2496–2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Saito C, Ueda T, Abe H et al (2002) A complex and mobile structure forms a distinct subregion within the continuous vacuolar membrane in young cotyledons of Arabidopsis. Plant J 29:245–255

    Article  PubMed  Google Scholar 

  49. Saito C, Uemura T, Awai C et al (2011) The occurrence of ‘bulbs’, a complex configuration of the vacuolar membrane, is affected by mutations of vacuolar SNARE and phospholipase in Arabidopsis. Plant J 68:64–73

    Article  CAS  PubMed  Google Scholar 

  50. Saito C, Uemura T, Awai C et al (2011) Qualitative difference between “bulb” membranes and other vacuolar membranes. Plant Signal Behav 6:1914–1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Obara K, Kuriyama H, Fukuda H (2001) Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in Zinnia. Plant Physiol 125:615–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Smertenko AP, Bozhkov PV, Filonova LH et al (2003) Re-organisation of the cytoskeleton during developmental programmed cell death in Picea abies embryos. Plant J 33:813–824

    Article  CAS  PubMed  Google Scholar 

  53. Gunawardena AH (2008) Programmed cell death and tissue remodelling in plants. J Exp Bot 59:445–451

    Article  CAS  PubMed  Google Scholar 

  54. Guo WJ, Ho TH (2008) An abscisic acid-induced protein, HVA22, inhibits gibberellin-mediated programmed cell death in cereal aleurone cells. Plant Physiol 147:1710–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wright H, van Doorn WG, Gunawardena AH (2009) In vivo study of developmental programmed cell death using the lace plant (Aponogeton madagascariensis; Aponogetonaceae) leaf model system. Am J Bot 96:865–876

    Article  PubMed  Google Scholar 

  56. Stone SL, Williams LA, Farmer LM et al (2006) KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell 18:3415–3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gu Y, Innes RW (2012) The KEEP ON GOING protein of Arabidopsis regulates intracellular protein trafficking and is degraded during fungal infection. Plant Cell 24:4717–4730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gu Y, Innes RW (2011) The KEEP ON GOING protein of Arabidopsis recruits the ENHANCED DISEASE RESISTANCE1 protein to trans-Golgi network/early endosome vesicles. Plant Physiol 155:1827–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wawrzynska A, Christiansen KM, Lan Y et al (2008) Powdery mildew resistance conferred by loss of the ENHANCED DISEASE RESISTANCE1 protein kinase is suppressed by a missense mutation in KEEP ON GOING, a regulator of abscisic acid signaling. Plant Physiol 148:1510–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Higaki T, Kutsuna N, Okubo E et al (2006) Actin microfilaments regulate vacuolar structures and dynamics: dual observation of actin microfilaments and vacuolar membrane in living tobacco BY-2 Cells. Plant Cell Physiol 47:839–852

    Article  CAS  PubMed  Google Scholar 

  61. Pajerowska-Mukhtar K, Dong X (2009) A kiss of death-proteasome-mediated membrane fusion and programmed cell death in plant defense against bacterial infection. Genes Dev 23:2449–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lampl N, Alkan N, Davydov O et al (2013) Set-point control of RD21 protease activity by AtSerpin1 controls cell death in Arabidopsis. Plant J 74:498–510

    Article  CAS  PubMed  Google Scholar 

  63. Lampl N, Budai-Hadrian O, Davydov O et al (2010) Arabidopsis AtSerpin1, crystal structure and in vivo interaction with its target protease RESPONSIVE TO DESICCATION-21 (RD21). J Biol Chem 285:13550–13560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Seybold H, Trempel F, Ranf S (2014) Ca2+ signalling in plant immune response: from pattern recognition receptors to Ca2+ decoding mechanisms. New Phytol 204:782–790

    Google Scholar 

  65. Kuchitsu K, Kikuyama M, Shibuya N (1993) N-acetylchitooligosaccharides, biotic elicitor for phytoalexin production, induce transient membrane depolarization in suspension-cultured rice cells. Protoplasma 174:79–81

    Article  CAS  Google Scholar 

  66. Kikuyama M, Kuchitsu K, Shibuya N (1997) Membrane depolarization induced by N-acetylchitooligosaccharide elicitor in suspension-cultured rice cells. Plant Cell Physiol 38:902–909

    Article  CAS  Google Scholar 

  67. Kuchitsu K, Yazaki Y, Sakano K et al (1997) Transient cytoplasmic pH change and ion fluxes through the plasma membrane in suspension-cultured rice cells triggered by N-acetylchitooligosaccharide elicitor. Plant Cell Physiol 38:1012–1018

    Article  CAS  Google Scholar 

  68. Kurusu T, Hamada H, Sugiyama Y et al (2011) Negative feedback regulation of microbe-associated molecular pattern-induced cytosolic Ca2+ transients by protein phosphorylation. J Plant Res 124:415–424

    Article  CAS  PubMed  Google Scholar 

  69. Kuchitsu K, Kosaka H, Shiga T et al (1995) EPR evidence for generation of hydroxyl radical triggered by N-acetylchitooligosaccharide elicitor and a protein phosphatase inhibitor in suspension-cultured rice cells. Protoplasma 188:138–142

    Article  CAS  Google Scholar 

  70. Kärkönen A, Kuchitsu K (2014) Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry 112:22–32

    Google Scholar 

  71. Kadota Y, Watanabe T, Fujii S et al (2005) Cell cycle dependence of elicitor-induced signal transduction in tobacco BY-2 cells. Plant Cell Physiol 46:156–165

    Article  CAS  PubMed  Google Scholar 

  72. Kadota Y, Fujii S, Ogasawara Y et al (2006) Continuous recognition of the elicitor signal for several hours is prerequisite for induction of cell death and prolonged activation of signaling events in tobacco BY-2 cells. Plant Cell Physiol 47:1337–1342

    Article  CAS  PubMed  Google Scholar 

  73. Kadota Y, Watanabe T, Fujii S et al (2004) Crosstalk between elicitor-induced cell death and cell cycle regulation in tobacco BY-2 cells. Plant J 40:131–142

    Article  CAS  PubMed  Google Scholar 

  74. Ohno R, Kadota Y, Fujii S et al (2011) Cryptogein-induced cell cycle arrest at G2 phase is associated with inhibition of cyclin-dependent kinases, suppression of expression of cell cycle-related genes and protein degradation in synchronized tobacco BY-2 cells. Plant Cell Physiol 52:922–932

    Article  CAS  PubMed  Google Scholar 

  75. Torres MA, Jones JD, Dangl JL (2005) Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat Genet 37:1130–1134

    Article  CAS  PubMed  Google Scholar 

  76. Suzuki N, Miller G, Morales J et al (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699

    Article  CAS  PubMed  Google Scholar 

  77. Ogasawara Y, Kaya H, Hiraoka G et al (2008) Synergistic activation of Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J Biol Chem 283:8885–8892

    Article  CAS  PubMed  Google Scholar 

  78. Takeda S, Gapper C, Kaya H et al (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319:1241–1244

    Article  CAS  PubMed  Google Scholar 

  79. Kimura S, Kaya H, Kawarazaki T et al (2012) Protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca2+ and reactive oxygen species. Biochim Biophys Acta 1823:398–405

    Article  CAS  PubMed  Google Scholar 

  80. Kobayashi M, Ohura I, Kawakita K et al (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19:1065–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kimura S, Kawarazaki T, Nibori H et al (2013) The CBL-interacting protein kinase CIPK26 is a novel interactor of Arabidopsis NADPH oxidase AtRbohF that negatively modulates its ROS-producing activity in a heterologous expression system. J Biochem 153:191–195

    Article  CAS  PubMed  Google Scholar 

  82. Drerup MM, Schlücking K, Hashimoto K et al (2013) The calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF. Mol Plant 6:559–569

    Article  CAS  PubMed  Google Scholar 

  83. Hamada H, Kurusu T, Okuma E et al (2012) Regulation of a proteinaceous elicitor-induced Ca2+ influx and production of phytoalexins by a putative voltage-gated cation channel, OsTPC1, in cultured rice cells. J Biol Chem 287:9931–9939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gauthier A, Lamotte O, Reboutier D et al (2007) Cryptogein-induced anion effluxes: electrophysiological properties and analysis of the mechanisms through which they contribute to the elicitor-triggered cell death. Plant Signal Behav 2:86–95

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kurusu T, Saito K, Horikoshi S et al (2013) An S-type anion channel SLAC1 is involved in cryptogein-induced ion fluxes and modulates hypersensitive responses in tobacco BY-2 Cells. PLoS One 8:e70623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Inagaki S, Umeda M (2011) Cell-cycle control and plant development. Int Rev Cell Mol Biol 291:227–261

    Article  CAS  PubMed  Google Scholar 

  87. Reinhardt HC, Schumacher B (2012) The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet 28:128–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Schwessinger B, Zipfel C (2008) News from the frontline: recent insights into PAMP-triggered immunity in plants. Curr Opin Plant Biol 11:389–395

    Article  CAS  PubMed  Google Scholar 

  89. Lorrain S, Vailleau F, Balagué C et al (2003) Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends Plant Sci 8:263–271

    Article  CAS  PubMed  Google Scholar 

  90. Wu C, Bordeos A, Madamba MR et al (2008) Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genomics 279:605–619

    Article  CAS  PubMed  Google Scholar 

  91. Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the “Hela” cell in the cell biology of higher plants. Int Rev Cyt 132:1–30

    Article  CAS  Google Scholar 

  92. Mironov VV, De Veylder L, Van Montagu M et al (1999) Cyclin-dependent kinases and cell division in plants – the nexus. Plant Cell 11:509–522

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Umeda M, Shimotohno A, Yamaguchi M (2005) Control of cell division and transcription by cyclin-dependent kinase-activating kinases in plants. Plant Cell Physiol 46:1437–1442

    Article  CAS  PubMed  Google Scholar 

  94. Sperka T, Wang J, Rudolph KL (2012) DNA damage checkpoints in stem cells, ageing and cancer. Nat Rev Mol Cell Biol 13:579–590

    Article  CAS  PubMed  Google Scholar 

  95. Sullivan KD, Gallant-Behm CL, Henry RE et al (2012) The p53 circuit board. Biochim Biophys Acta 1825:229–244

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Xiong Y, Hannon GJ, Zhang H et al (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366:701–704

    Article  CAS  PubMed  Google Scholar 

  97. O’connor PM, Ferris DK, Pagano M et al (1993) G2 delay induced by nitrogen mustard in human cells affects cyclin A/cdk2 and cyclin B1/cdc2-kinase complexes differently. J Biol Chem 268:8298–8308

    Article  PubMed  Google Scholar 

  98. Jin P, Gu Y, Morgan DO (1996) Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells. J Cell Biol 134:963–970

    Article  CAS  PubMed  Google Scholar 

  99. Zipfel C (2009) Early molecular events in PAMP-triggered immunity. Curr Opin Plant Biol 12:414–420

    Article  CAS  PubMed  Google Scholar 

  100. Tsuda K, Katagiri F (2010) Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr Opin Plant Biol 13:459–465

    Article  CAS  PubMed  Google Scholar 

  101. Maekawa T, Kufer TA, Schulze-Lefert P (2011) NLR functions in plant and animal immune systems: so far and yet so close. Nat Immunol 12:817–826

    Article  CAS  PubMed  Google Scholar 

  102. Gassmann W, Bhattacharjee S (2012) Effector-triggered immunity signaling: from gene-for-gene pathways to protein-protein interaction networks. Mol Plant Microbe Interact 25:862–868

    Article  CAS  PubMed  Google Scholar 

  103. Liu W, Liu J, Ning Y et al (2013) Recent progress in understanding PAMP- and effector-triggered immunity against the rice blast fungus Magnaporthe oryzae. Mol Plant 6:605–620

    Article  CAS  PubMed  Google Scholar 

  104. Mittler R, Vanderauwera S, Suzuki N et al (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  105. Livanos P, Apostolakos P, Galatis B (2012) Plant cell division: ROS homeostasis is required. Plant Signal Behav 7:771–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kaya H, Nakajima R, Iwano M et al (2014) Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. Plant Cell 26:1069–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Marino D, Dunand C, Puppo A et al (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17:9–15

    Article  CAS  PubMed  Google Scholar 

  108. Burhans WC, Heintz NH (2009) The cell cycle is a redox cycle: linking phase-specific targets to cell fate. Free Radic Biol Med 47:1282–1293

    Article  CAS  PubMed  Google Scholar 

  109. Torres MA, Dangl JL, Jones JD (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci U S A 99:517–522

    Article  CAS  PubMed  Google Scholar 

  110. Yoshie Y, Goto K, Takai R et al (2005) Function of the rice gp91phox homologs OsrbohA and OsrbohE genes in ROS-dependent plant immune responses. Plant Biotechnol 22:127–135

    Article  CAS  Google Scholar 

  111. Wong HL, Pinontoan R, Hayashi K et al (2007) Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell 19:4022–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang S, Du H, Klessig DF (1998) Activation of the tobacco SIP kinase by both a cell wall-derived carbohydrate elicitor and purified proteinaceous elicitins from Phytophthora spp. Plant Cell 10:435–450

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Yoshioka H, Sugie K, Park HJ et al (2001) Induction of plant gp91 phox homolog by fungal cell wall, arachidonic acid, and salicylic acid in potato. Mol Plant Microbe Interact 14:725–736

    Article  CAS  PubMed  Google Scholar 

  114. Yoshioka H, Numata N, Nakajima K et al (2003) Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15:706–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Underwood W, Zhang S, He SY (2007) The Pseudomonas syringae type III effector tyrosine phosphatase HopAO1 suppresses innate immunity in Arabidopsis thaliana. Plant J 52:658–672

    Article  CAS  PubMed  Google Scholar 

  116. Ren D, Yang H, Zhang S (2002) Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J Biol Chem 277:559–565

    Article  CAS  PubMed  Google Scholar 

  117. Menges M, Hennig L, Gruissem W et al (2002) Cell cycle-regulated gene expression in Arabidopsis. J Biol Chem 277:41987–42002

    Article  CAS  PubMed  Google Scholar 

  118. Suzuki K, Yano A, Shinshi H (1999) Slow and prolonged activation of the p47 protein kinase during hypersensitive cell death in a culture of tobacco cells. Plant Physiol 119:1465–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Higaki T, Kutsuna N, Sano T et al (2010) Quantification and cluster analysis of actin cytoskeletal structures in plant cells: role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells. Plant J 61:156–165

    Article  CAS  PubMed  Google Scholar 

  120. Shimizu S, Kanaseki T, Mizushima N et al (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6:1221–1228

    Article  CAS  PubMed  Google Scholar 

  121. Tsujimoto Y, Shimizu S (2005) Another way to die: autophagic programmed cell death. Cell Death Differ 12(Suppl 2):1528–1534

    Article  CAS  PubMed  Google Scholar 

  122. Patel S, Caplan J, Dinesh-Kumar SP (2006) Autophagy in the control of programmed cell death. Curr Opin Plant Biol 9:391–396

    Article  CAS  PubMed  Google Scholar 

  123. Van Doorn WG, Woltering EJ (2010) What about the role of autophagy in PCD? Trends Plant Sci 15:361–362

    Article  PubMed  CAS  Google Scholar 

  124. Minina EA, Filonova LH, Fukada K et al (2013) Autophagy and metacaspase determine the mode of cell death in plants. J Cell Biol 203:917–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Teh OK, Hofius D (2014) Membrane trafficking and autophagy in pathogen-triggered cell death and immunity. J Exp Bot 65:1297–1312

    Article  CAS  PubMed  Google Scholar 

  126. Gump JM, Thorburn A (2011) Autophagy and apoptosis: what is the connection? Trends Cell Biol 21:387–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tsukamoto S, Kuma A, Murakami M et al (2008) Autophagy is essential for preimplantation development of mouse embryos. Science 321:117–120

    Article  CAS  PubMed  Google Scholar 

  128. Meléndez A, Levine B (2009) Autophagy in C. elegans. In: Kramer JM, Moerman DC (eds) WormBook

    Google Scholar 

  129. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  CAS  PubMed  Google Scholar 

  130. Kurusu T, Koyano T, Hanamata S et al (2014) OsATG7 is required for autophagy-dependent lipid metabolism in rice postmeiotic anther development. Autophagy 10:878–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hanamata S, Kurusu T, Okada M et al (2013) In vivo imaging and quantitative monitoring of autophagic flux in tobacco BY-2 cells. Plant Signal Behav 8:e22510

    Article  PubMed  CAS  Google Scholar 

  132. Barna B, Györgyi B (1992) Resistance of young versus old tobacco leaves to necrotrophs, fusaric acid, cell wall-degrading enzymes and autolysis of membrane lipids. Physiol Mol Plant Pathol 40:247–257

    Article  CAS  Google Scholar 

  133. Bailey BA, Avni A, Andersen JD (1995) The influence of ethylene and tissue age on the sensitivity of Xanthi tobacco leaves to a Trichoderma viride xylanase. Plant Cell Physiol 36:1669–1676

    CAS  Google Scholar 

  134. Nagata T, Takebe I (1970) Cell wall regeneration and cell division in isolated tobacco mesophyll protoplasts. Planta 92:301–308

    Article  CAS  PubMed  Google Scholar 

  135. Ricci P, Bonnet P, Huet JC et al (1989) Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. Eur J Biochem 183:555–563

    Article  CAS  PubMed  Google Scholar 

  136. Menges M, Hennig L, Gruissem W et al (2003) Genome-wide gene expression in an Arabidopsis cell suspension. Plant Mol Biol 53:423–442

    Article  CAS  PubMed  Google Scholar 

  137. Bao Z, Yang H, Hua J (2013) Perturbation of cell cycle regulation triggers plant immune response via activation of disease resistance genes. Proc Natl Acad Sci U S A 110:2407–2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sanchez Mde L, Caro E, Desvoyes B et al (2008) Chromatin dynamics during the plant cell cycle. Semin Cell Dev Biol 19:537–546

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyuki Kuchitsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kurusu, T., Higaki, T., Kuchitsu, K. (2015). Programmed Cell Death in Plant Immunity: Cellular Reorganization, Signaling, and Cell Cycle Dependence in Cultured Cells as a Model System. In: Gunawardena, A.N., McCabe, P.F. (eds) Plant Programmed Cell Death. Springer, Cham. https://doi.org/10.1007/978-3-319-21033-9_4

Download citation

Publish with us

Policies and ethics