Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

  • 3935 Accesses

Abstract

The GP modelling framework enables incorporation of prior knowledge of various kinds. The chapter shows the application of GP models in block-oriented nonlinear models, how the local linear dynamic models can be incorporated into GP models and how GP models can be used in the context of the paradigm of linear models with varying parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hansen, J., Murray-Smith, R., Johansen, T.A.: Nonparametric identification of linearizations and uncertainty using Gaussian process models–application to robust wheel slip control. In: Joint 44th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 7994–7999. Sevilla (2005)

    Google Scholar 

  2. Schmitt, K., Madsen, J., Anitescu, M., Negrut, D.: A Gaussian process based approach for handling uncertainty in vehicle dynamics simulation. Int. Mech. Eng. Congr. Expos. (IMECE) 11, 617–628 (2008)

    Google Scholar 

  3. Álvarez, M.A., Luengo, D., Lawrence, N.D.: Latent force models. J. Mach. Learn. Res. Proc. Track 5, 9–16 (2009)

    Google Scholar 

  4. Hartikainen, J., Särkkä, S.: Sequential inference for latent force models. In: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, UAI 2011, pp. 311–318 (2011)

    Google Scholar 

  5. Ko, J., Klein, D.J., Fox, D., Haehnel, D.: Gaussian processes and reinforcement learning for identification and control of an autonomous blimp. In: Proceedings of the International Conference on Robotics and Automation, pp. 742–747. Rome (2007)

    Google Scholar 

  6. Chen, N., Qian, Z., Meng, X., Nabney, I.: Short-term wind power forecasting using Gaussian processes. In: International Joint Conference on Artificial Intelligence IJCAI’13, pp. 1771–1777 (2013)

    Google Scholar 

  7. Murray-Smith, R., Pearlmutter, B.A.: Transformations of Gaussian process priors. In: Winkler, J., Niranjan, M., Lawrence, N. (eds.) Deterministic and Statistical Methods in Machine Learning. Lecture Notes in Computer Science, vol. 3635, pp. 110–123. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Ažman, K., Kocijan, J.: Identifikacija dinamičnega sistema s histerezo z modelom na osnovi Gaussovih procesov. In: B. Zajc, A. Trost (eds.) Zbornik štirinajste elektrotehniške in računalniške konference (ERK 2005), vol. A, pp. 253–256. Portorož, Slovenia (2005). (In Slovene)

    Google Scholar 

  9. Ažman, K.: Identifikacija dinamičnih sistemov z Gaussovimi procesi. Ph.D. thesis, University of Ljubljana, Ljubljana (2007). (In Slovene)

    Google Scholar 

  10. Narendra, K.S., Parthasarathy, K.: Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Netw. 1(1), 4–27 (1990)

    Article  Google Scholar 

  11. Gibbs, M.N.: Bayesian Gaussian processes for regression and classification. Ph.D. thesis, University of Cambridge, Cambridge (1997)

    Google Scholar 

  12. Leith, D.J., Leithead, W.E., Neo, K.S.: Gaussian regression based on models with two stochastic processes. In: Proceedings of IFAC 16th World Congress 2005, pp. 1–6. Prague (2005)

    Google Scholar 

  13. Solak, E., Murray-Smith, R., Leithead, W.E., Leith, D.J., Rasmussen, C.E.: Derivative observations in Gaussian process models of dynamic systems. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems, vol. 15, pp. 529–536. MIT Press, Cambridge, MA (2003)

    Google Scholar 

  14. Särkkä, S.: Linear operators and stochastic partial differential equations in Gaussian process regression. In: Proceedings of the International Conference on Artificial Neural Networks (ICANN). Espoo (2011)

    Google Scholar 

  15. Hall, J., Rasmussen, C., Maciejowski, J.: Modelling and control of nonlinear systems using Gaussian processes with partial model information. In: Conference on Decision and Control (CDC) (2012)

    Google Scholar 

  16. Murray-Smith, R., Johansen, T.A., Shorten, R.: On transient dynamics, off-equilibrium behaviour and identification in blended multiple model structures. In: Proceedings of European Control Conference, pp. BA-14. Karlsruhe (1999)

    Google Scholar 

  17. Murray-Smith, R., Girard, A.: Gaussian process priors with ARMA noise models. In: Proceedings of Irish Signals and Systems Conference, pp. 147–152. Maynooth (2001)

    Google Scholar 

  18. Nelles, O.: Nonlinear System Identification. Springer, Heidelberg (2001)

    Google Scholar 

  19. Haber, R., Unbehauen, H.: Structure identification of nonlinear dynamic systems: A survey on input/output approaches. Automatica 26(4), 651–677 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Giri, F., Bai, E.W. (eds.) Block-oriented Nonlinear System Identification. Lecture Notes in Control and Information Sciences, vol. 404, Springer, Heidelberg (2010)

    Google Scholar 

  21. Leith, D.J., Leithead, W.E., Murray-Smith, R.: Nonlinear structure identification with application to Wiener-Hammerstein systems. In: Proceedings of 13th IFAC Symposium on System Identification, Rotterdam (2003)

    Google Scholar 

  22. Lindsten, F., Schön, T.B., Jordan, M.I.: A semiparametric bayesian approach to Wiener system identification. In: 16th IFAC Symposium on System Identification, pp. 1137–1142. Brussels (2012)

    Google Scholar 

  23. Lindsten, F., Schön, T.B., Jordan, M.I.: Bayesian semiparametric Wiener system identification. Automatica 49(7), 2053–2063 (2013). doi:10.1016/j.automatica.2013.03.021

    Article  MathSciNet  Google Scholar 

  24. Pillonetto, G.: Consistent identification of Wiener systems: a machine learning viewpoint. Automatica 49, 2704–2712 (2013)

    Article  MathSciNet  Google Scholar 

  25. Kocijan, J.: Incorporating knowledge about model structure in the identification of Gaussian-process models. In: Recent Advances in Telecommunications, Signals and Systems, pp. 124–129. Lemesos (2013)

    Google Scholar 

  26. Hachino, T., Hashiguchi, Y., Takata, H., Fukushima, S., Igarashi, Y.: Local Gaussian process models for identification of discrete-time Hammerstein systems. ICIC Express Lett. 8, 173–179 (2014)

    Google Scholar 

  27. Hachino, T., Yamakawa, S.: Non-parametric identification of continuous-time Hammerstein systems using Gaussian process model and particle swarm optimization. Artif. Life Robot. 17(1), 35–40 (2012)

    Article  Google Scholar 

  28. Martinez, W., Martinez, A.: Computational Statistics Handbook with MATLAB, 2nd edn. Chapman & Hall/CRC Computer Science & Data Analysis. Taylor and Francis, London (2007)

    Google Scholar 

  29. Robert, C., Casella, G.: Monte Carlo Statistical Methods Springer Texts in Statistics. Springer, New York, NY (2004)

    Google Scholar 

  30. Andrieu, C., Doucet, A., Holenstein, R.: Particle Markov chain Monte Carlo methods. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 72(3), 269–342 (2010)

    Article  MathSciNet  Google Scholar 

  31. Tötterman, S., Toivonen, H.T.: Support vector method for identification of Wiener models. J. Process Control 19(7), 1174–1181 (2009)

    Article  Google Scholar 

  32. Rasmussen, C.E., Williams, C.K.I.: Gaussian Process. Mach. Learn. MIT Press, Cambridge, MA (2006)

    Google Scholar 

  33. Girard, A.: Approximate methods for propagation of uncertainty with Gaussian process models. Ph.D. thesis, University of Glasgow, Glasgow (2004). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.63.8313

  34. May, R., Dandy, G., Maier, H.: Artificial Neural Networks - Methodological Advances and Biomedical Applications. In: Chapter Review of Input Variable Selection Methods for Artificial Neural Networks, pp. 19–44. InTech, Rijeka (2011)

    Google Scholar 

  35. Johansen, T.A., Shorten, R., Murray-Smith, R.: On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 8, 297–313 (2000)

    Article  Google Scholar 

  36. Murray-Smith, R., Johansen, T.A. (eds.): Multiple Model Approaches to Modelling and Control. Taylor and Francis, London (1997)

    Google Scholar 

  37. Kocijan, J., Žunič, G., Strmčnik, S., Vrančić, D.: Fuzzy gain-scheduling control of a gas-liquid separation plant implemented on a PLC. Int. J. Control 75, 1082–1091 (2002)

    Article  MATH  Google Scholar 

  38. Gregorčič, G., Lightbody, G.: From multiple model networks to the Gaussian processes prior model. In: Proceedings of IFAC ICONS Conference, pp. 149–154. Faro (2003)

    Google Scholar 

  39. Shi, J.Q., Choi, T.: Gaussian Process Regression Analysis for Functional Data. Chapman and Hall/CRC, Taylor and Francis group, Boca Raton, FL (2011)

    Google Scholar 

  40. Gregorčič, G., Lightbody, G.: An affine Gaussian process approach for nonlinear system identification. Syst. Sci. J. 29(2), 47–63 (2003)

    MATH  Google Scholar 

  41. Gregorčič, G., Lightbody, G.: Local model identification with Gaussian processes. IEEE Trans. Neural Netw. 18(5), 1404–1423 (2007)

    Article  Google Scholar 

  42. Yu, J.: Online quality prediction of nonlinear and non-Gaussian chemical processes with shifting dynamics using finite mixture model based Gaussian process regression approach. Chem. Eng. Sci. 82, 22–30 (2012)

    Article  Google Scholar 

  43. Shi, J.Q., Murray-Smith, R., Titterington, D.M.: Hierarchical Gaussian process mixtures for regression. Stat. Comput. 15(1), 31–41 (2005)

    Article  MathSciNet  Google Scholar 

  44. Grbić, R., Slišković, D., Kadlec, P.: Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models. Comput. Chem. Eng. 58, 84–97 (2013)

    Article  Google Scholar 

  45. Zhao, X., Fu, Y., Liu, Y.: Human motion tracking by temporal-spatial local Gaussian process experts. IEEE Trans. Image Process. 20(4), 1141–1151 (2011)

    Article  MathSciNet  Google Scholar 

  46. Nguyen-Tuong, D., Seeger, M., Peters, J.: Real-time local GP model learning. In: Chapter, From Motor Learning to Interaction Learning in Robots, vol. 264, pp. 193–207.Springer, Heidelberg (2010)

    Google Scholar 

  47. Bukkapatnam, S.T.S., Cheng, C.: Forecasting the evolution of nonlinear and nonstationary systems using recurrence-based local Gaussian process models. Phys. Rev. E 82(5) (2010)

    Google Scholar 

  48. Hu, M., Sun, Z.: Multimodel nonlinear predictive control with Gaussian process model. Lect. Notes Electr. Eng. 238, 1895–1902 (2014)

    Article  Google Scholar 

  49. Yu, J., Chen, K., Rashid, M.: A Bayesian model averaging based multi-kernel Gaussian process regression framework for nonlinear state estimation and quality prediction of multiphase batch processes with transient dynamics and uncertainty. Chem. Eng. Sci. 93, 96–109 (2013)

    Article  Google Scholar 

  50. Leith, D.J., Leithead, W.E., Solak, E., Murray-Smith, R.: Divide and conquer identification using Gaussian processes. In: Proceedings of the 41st Conference on Decision and Control, pp. 624–629. Las Vegas, AZ (2002)

    Google Scholar 

  51. Ažman, K., Kocijan, J.: Comprising prior knowledge in dynamic Gaussian process models. In: Rachev, B., Smrikarov, A. (eds.) International Conference on Computer Systems and Technologies —CompSysTech 2005, pp. IIIB.2–1 – IIIB.2–6. Varna (2005)

    Google Scholar 

  52. Ažman, K., Kocijan, J.: Dynamical systems identification using Gaussian process models with incorporated local models. Eng. Appl. Artif. Intell. 24(2), 398–408 (2011)

    Article  Google Scholar 

  53. Kocijan, J., Girard, A.: Incorporating linear local models in Gaussian process model. In: Proceedings of IFAC 16th World Congress, p. 6. Prague (2005)

    Google Scholar 

  54. Ažman, K., Kocijan, J.: Non-linear model predictive control for models with local information and uncertainties. Trans. Inst. Meas. Control 30(5) (2008)

    Google Scholar 

  55. Ljung, L.: System Identification—Theory for the User, 2nd edn. Prentice Hall, Upper Saddle River, NJ (1999)

    Google Scholar 

  56. Kocijan, J., Girard, A., Banko, B., Murray-Smith, R.: Dynamic systems identification with Gaussian processes. Math. Comput. Model. Dyn. Syst. 11(4), 411–424 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  57. Kocijan, J., Banko, B., Likar, B., Girard, A., Murray-Smith, R., Rasmussen, C.E.: A case based comparison of identification with neural networks and Gaussian process models. In: Proceedings of IFAC ICONS conference, pp. 137–142. Faro (2003)

    Google Scholar 

  58. Matko, D., Škrjanc, I., Mušič, G.: Robustness of fuzzy control and its application to a thermal plant. Math. Comput. Simul. 51, 245–255 (2000)

    Article  Google Scholar 

  59. Ažman, K., Kocijan, J.: Fixed-structure Gaussian process model. Int. J. Syst. Sci. 40(12), 1253–1262 (2009)

    Article  MATH  Google Scholar 

  60. Leith, D.J., Leithead, W.E.: Survey of gain-scheduling analysis and design. Int. J. Control 73, 1001–1025 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  61. Peng, H., Ozaki, T., Haggan-Ozaki, V., Toyoda, Y.: A parameter optimization method for radial basis function type models. IEEE Trans. Neural Netw. (2) (2003)

    Google Scholar 

  62. Leith, D.J., Leithead, W.E.: Gain scheduled and nonlinear systems: dynamic analysis by velocity-based linearisation families. Int. J. Control 70(2), 289–317 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  63. Kocijan, J., Ažman, K.: Applications of varying parameters modelling with Gaussian processes. In: 2nd IFAC International Conference on Intelligent Control Systems and Signal Processing (ICONS), Istanbul (2009)

    Google Scholar 

  64. Leith, D.J., Leithead, W.E.: Analytic framework for blended multiple model systems using linear local models. Int. J. Control 72, 605–619 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  65. Leith, D.J., Leithead, W.E.: Global reconstruction of nonlinear systems from families of linear systems. In: Proceedings of 15th IFAC World Congress 2002, p. 6. Barcelona (2002)

    Google Scholar 

  66. Ažman, K., Kocijan, J.: Identifikacija dinamičnega sistema z znanim modelom šuma z modelom na osnovi Gaussovih procesov. In: Zajc, B., Trost, A. (eds.) Zbornik petnajste elektrotehniške in računalniške konference (ERK), pp. 289–292. Portorož (2006). (In Slovene)

    Google Scholar 

  67. Nyström, R.H., Åkesson, B.M., Toivonen, H.T.: Gain-scheduling controllers based on velocity-form linear parameter-varying models applied to an example process. Ind. Eng. Chem. Res. 41, 220–229 (2002)

    Article  Google Scholar 

  68. Rosenvasser, Y.N., Polyakov, E.Y., Lampe, B.P.: Application of Laplace transformation for digital redesign of continuous control systems. IEEE Trans. Autom. Control 44(4), 883–886 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juš Kocijan .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kocijan, J. (2016). Incorporation of Prior Knowledge. In: Modelling and Control of Dynamic Systems Using Gaussian Process Models. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-21021-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21021-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21020-9

  • Online ISBN: 978-3-319-21021-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics