Advertisement

Varying Aspect Ratio Two-Pass Internal Ribbed Cooling Channels with 180° Bends

  • Igor V. ShevchukEmail author
Chapter
  • 1.3k Downloads
Part of the Mathematical Engineering book series (MATHENGIN)

Abstract

In this Chapter, original results of the simulation and optimization of convective heat transfer in the varying aspect ratio two-pass internal ribbed cooling channels with 180° bends are outlined and analysed from a single viewpoint.

Keywords

Heat Transfer Nusselt Number Average Nusselt Number Heat Transfer Augmentation Smooth Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Jenkins SC, Shevchuk IV, von Wolfersdorf J, Weigand B (2012) Transient thermal field measurements in a high aspect ratio channel related to transient thermochromic liquid crystal experiments. Trans ASME J Turbomach 134(3):Paper 031002Google Scholar
  2. 2.
    Jenkins SC, Zehnder F, Shevchuk IV, von Wolfersdorf J, Weigand B, Schnieder M (2013) The effect of ribs and tip wall distance on heat transfer for a varying aspect ratio two-pass ribbed internal cooling channel. Trans ASME J Turbomach 135(2):Paper 021001Google Scholar
  3. 3.
    Shevchuk IV, Jenkins S, von Wolfersdorf J, Weigand B (2007) Aerothermal efficiency of a ribbed channel in an internal gas turbine blade cooling system. Proceedings of the 7th ETC (Athens, Greece), pp 1041–1050Google Scholar
  4. 4.
    Shevchuk IV, Jenkins SC, Weigand B, von Wolfersdorf J, Neumann SO, Schnieder M (2011) Validation and analysis of numerical results for a varying aspect ratio two-pass internal cooling channel. Trans ASME J Heat Transfer 133(5):Paper 051701Google Scholar
  5. 5.
    Siddique W, El-Gabry L, Shevchuk IV, Hushmandi NB, Fransson TH (2012) Flow structure, heat transfer and pressure drop in varying aspect ratio two-pass rectangular smooth channels. Heat Mass Transf 48(5):735–748CrossRefGoogle Scholar
  6. 6.
    Siddique W, Shevchuk IV, El-Gabry L, Hushmandi NB, Fransson TH (2013) On flow structure, heat transfer and pressure drop in varying aspect ratio two-pass rectangular channel with ribs at 45°. Heat Mass Transf 49(5):679–694CrossRefGoogle Scholar
  7. 7.
    Cai L, Ota H, Hirota M, Nakayama H, Fujita H (2004) Influence of channel aspect ratio on heat transfer characteristics in sharp turn connected two-pass channels with inclined divider wall. Exp Therm Fluid Sci 28(6):513–523CrossRefGoogle Scholar
  8. 8.
    Chen CC, Liou TM (2000) Rotating effect on fluid flow in a smooth duct with a 180-degree sharp turn. In: Proceedings of the 2000 ASME turbo expo (Munich, Germany): Paper GT-0228Google Scholar
  9. 9.
    Cho HH, Lee SY, Rhee DH (2004) Effects of cross ribs on heat/mass transfer in a two-pass rotating duct. Heat Mass Transf 40(10):743–755CrossRefGoogle Scholar
  10. 10.
    Elfert M, Jarius MP, Weigand B (2004) Detailed flow investigation using PIV in a typical turbine cooling geometry with ribbed walls. In: Proceedings of the 2004 ASME turbo expo (Vienna, Austria) vol 3, pp 533–545Google Scholar
  11. 11.
    Han JC, Chandra PR, Lau SC (1988) Local heat/mass transfer distributions around sharp 180 deg turns in two-pass smooth and rib-roughened channels. Trans ASME J Heat Transf 110(1):91–98CrossRefGoogle Scholar
  12. 12.
    Hirota M, Fujita H, Syuhada A, Araki S, Yoshida T, Tanaka T (1999) Heat/mass transfer characteristics in two-pass smooth channels with a sharp 180-deg turn. Int J Heat Mass Transf 42(20):3757–3770CrossRefGoogle Scholar
  13. 13.
    Hirota M, Fujita H, Cai L, Nakayama H, Yanagida M, Syafa’at A (2002) Heat (mass) transfer in rectangular cross-sectioned two-pass channels with an inclined divider wall. Int J Heat Mass Transf 45(5):1093–1107CrossRefGoogle Scholar
  14. 14.
    Liou T-M, Chen C-C, Chen M-Y (2003) Rotating effect on fluid flow in two smooth ducts connected by a 180-deg bend. ASME J Fluids Eng 125(1):138–148CrossRefGoogle Scholar
  15. 15.
    Mochizuki S, Murata A, Shibata R, Yang WJ (1998) Detailed measurements of local heat transfer coefficients in turbulent flow through smooth and rib-roughened serpentine passages with a 180 sharp bend. Int J Heat Mass Transf 42(11):1925–1934CrossRefGoogle Scholar
  16. 16.
    Pape D, Jeanmart H, von Wolfersdorf J, Weigand B (2004) Influence of the 180° bend geometry on the pressure loss and heat transfer in a high aspect ratio rectangular smooth channel. In: Proceedings of 2004 ASME turbo expo (Vienna, Austria) vol 3, pp 685–695Google Scholar
  17. 17.
    Salameh T, Sundén B (2010) An experimental study of heat transfer and pressure drop on the bend surface of a U-duct. In: Proceedings of the 2010 ASME turbo expo (Glasgow, Scotland) 4 (Pts. A & B): 13–21Google Scholar
  18. 18.
    Schabacker J (1998) PIV investigation of the flow characteristics in internal coolant passages of gas turbine airfoils with two ducts connected by a sharp 180° bend. Ph.D. theses, EPFL, Lausanne, pp 1–149Google Scholar
  19. 19.
    Schüler M, Dreher HM, Neumann SO, Weigand B, Elfert M (2012) Numerical predictions of the effect of rotation on fluid flow and heat transfer in an engine-similar two-pass internal cooling channel with smooth and ribbed walls. Trans ASME J Turbomach 134(2):Paper 021021Google Scholar
  20. 20.
    Son SY, Kihm KD, Han JC (2002) PIV flow measurements for heat transfer characterization in two-pass square channels with smooth and 90 ribbed walls. Int J Heat Mass Transf 45(24):4809–4822CrossRefGoogle Scholar
  21. 21.
    Xie G, Sunden B, Wang L, Utriainen E (2011) Parametric study on heat transfer enhancement and pressure drop of an internal blade tip-wall with pin-fin arrays. Heat Mass Transf 47(1):45–57CrossRefGoogle Scholar
  22. 22.
    Chen Y, Nikitopoulos DE, Hibbs R, Acharya S, Myrum T (2000) Detailed mass transfer distribution in a ribbed coolant passage with a 180° bend. Int J Heat Mass Transf 43(8):1479–1492CrossRefGoogle Scholar
  23. 23.
    Iacovides H, Kelemenis G, Raisee M (2003) Flow and heat transfer in straight cooling passages with inclined ribs on opposite walls: an experimental and computational study. Experim Thermal Fluid Sci 27(3):283–294CrossRefGoogle Scholar
  24. 24.
    Jang YJ, Chen HC, Han JC (2001) Computation of flow and heat transfer in two-pass channels with 60 deg ribs. Trans ASME J Heat Transf 123(3):563–575CrossRefGoogle Scholar
  25. 25.
    Jang YJ, Chen HC, Han JC (2001) Numerical prediction of flow and heat transfer in a two-pass square channel with 90 ribs. Intl J Rotating Mach 7(3):195–208CrossRefGoogle Scholar
  26. 26.
    Kirillov AI, Ris VV, Smirnov EM, Zaitsev DK (2001) Numerical simulation of local heat transfer in rotating two-pass square channels. Ann New York Acad Sci 934:456–463CrossRefGoogle Scholar
  27. 27.
    Schüler M, Neumann SO, Weigand B (2009) Numerical investigations of pressure loss and heat transfer in a 180° bend of a ribbed two-pass internal cooling channel with engine-similar cross-sections. Proc IMechE Part A: J Power Energy 224(3):349–361CrossRefGoogle Scholar
  28. 28.
    Cho HH, Wu SJ, Kwon HJ (2000) Local heat/mass transfer measurements in a rectangular duct with discrete ribs. Trans ASME J Turbomach 122(3):579–586CrossRefGoogle Scholar
  29. 29.
    Han JC, Ou S, Park JS, Lei CK (1989) Augmented heat transfer in rectangular channels of narrow aspect ratios with rib turbulators. Int J Heat Mass Transf 32(9):1619–1630CrossRefGoogle Scholar
  30. 30.
    Liu Y-H, Wright LM, Fu W-L, Han J-C (2006) Rib spacing effect on heat transfer and pressure loss in a rotating two-pass rectangular channel (AR = 1:2) with 45-degree angled ribs. In: Proceedings of the 2006 ASME turbo expo (Barcelona, Spain) 3 (Pts. A & B): 363–373Google Scholar
  31. 31.
    Chanteloup D (2003) Experimental investigation of heat transfer and flow characteristics in various geometries of 2-pass internal cooling passages. PhD Thesis, EPFL, LausanneGoogle Scholar
  32. 32.
    Taslim ME, Liu H (2005) A combined numerical and experimental study of heat transfer in a roughened square channel with 45° ribs. Int J Rotating Mach 1:60–66CrossRefGoogle Scholar
  33. 33.
    Tsang CLP, Gillespie DRH, Ireland PT, Dailey GM (2001) Detailed performance assessment of 16 % blockage interrupted ribs at 60 degree inclination in a square section turbine blade cooling passage. In: NATO RTA/AVT symposium on advanced flow management, NorwayGoogle Scholar
  34. 34.
    Fu WL, Wright LM, Han JC (2006) Rotational buoyancy effects on heat transfer in five different aspect-ratio rectangular channels with smooth walls and 45 degree ribbed walls. Trans ASME J Heat Transf 128(11):1130–1141CrossRefGoogle Scholar
  35. 35.
    Astarita T, Cardone G (2000) Thermofluidynamic analysis of the flow in a sharp 180 deg turn channel. Exp Thermal Fluid Sci 20(3–4):188–200CrossRefGoogle Scholar
  36. 36.
    Han JC (1988) Heat transfer and friction characteristics in rectangular channels with rib turbulators. Trans ASME J Heat Transf 110(2):321–328CrossRefGoogle Scholar
  37. 37.
    Han JC, Park JS (1988) Developing heat transfer in rectangular channels with rib turbulators. Int J Heat Mass Transf 31(1):183–195CrossRefGoogle Scholar
  38. 38.
    Park JS, Han JC, Huang Y, Ou S, Boyle RJ (1992) Heat transfer performance comparison of five different rectangular channels with parallel angled ribs. Int J Heat and Mass Transf 35(11):2891–2903CrossRefGoogle Scholar
  39. 39.
    Rallabandi AP, Yang H, Han J-C (2009) Heat transfer and pressure drop correlations for square channels with 45 deg ribs at high Reynolds numbers. Trans ASME J Heat Transf 131(7):Paper 071703Google Scholar
  40. 40.
    Cho HH, Kim YY, Kim KM, Rhee DH (2003) Effects of rib arrangements and rotation speed on heat transfer in a two-pass duct. In: Proceedings of 2003 ASME turbo expo (Atlanta, Georgia, USA) 5 (Pts. A & B): 433–442Google Scholar
  41. 41.
    Iacovides H, Kounadis D, Launder BE, Xu Z (2006) Experimental study of the thermal development in a rotating square-ended U-bend. In: Proceedings of 2006 ASME turbo expo (Barcelona, Spain) 3 (Pts. A & B): 647–655Google Scholar
  42. 42.
    Lee SW, Ahn HS, Lau SC (2007) Heat (mass) transfer distribution in a two-pass trapezoidal channel with a 180 deg turn. Trans ASME J Heat Transf 129(11):1529–1537CrossRefGoogle Scholar
  43. 43.
    Lucci JM, Amano RS, Guntur K (2007) Turbulent flow and heat transfer in variable geometry U-bend blade cooling passage. In: Proceedings of the 2007 ASME turbo expo (Montreal, Canada) 4 (Pts. A & B): 159–167Google Scholar
  44. 44.
    Saha AK, Acharya S (2007) Turbulent heat transfer in ribbed coolant passages of different aspect ratios: parametric effects. Trans ASME J Heat Transf 129(4):449–463CrossRefGoogle Scholar
  45. 45.
    Etemad S, Sundén B (2006) Numerical investigation of turbulent heat transfer in a rectangular-sectioned 90° bend. Numer Heat Transf A 49(4):323–343CrossRefGoogle Scholar
  46. 46.
    Sewall EA, Tafti DK (2006) Large eddy simulation of flow and heat transfer in the 180° bend region of a stationary ribbed gas turbine internal cooling duct. Trans ASME J Turbomach 128(2):763–771CrossRefGoogle Scholar
  47. 47.
    Viswanathan AK, Tafti DK (2007) Investigation of Detached Eddy Simulations in capturing the effects of coriolis forces and centrifugal buoyancy in ribbed ducts. Trans ASME J Heat Transf 129(7):778–789CrossRefGoogle Scholar
  48. 48.
    Pape D (2004) Strömung und Wärmeübertragung in 180° Krümmern. Final Report on AG Turbo Project 2.4.10A, Institute of Aerospace Thermodynamics, Universität Stuttgart; GermanyGoogle Scholar
  49. 49.
    Pape D, Jenkins S, von Wolfersdorf J, Weigand B, Schnieder M (2006) The influence of including a partially smooth section in the 2nd leg of an internally ribbed two pass cooling channel. In: Proceedings of the 2006 ASME turbo expo (Barcelona, Spain) 3 (Pts. A & B): 633–645Google Scholar
  50. 50.
    Ireland PT, Jones TV (2000) Liquid crystal measurements of heat transfer and surface shear stress. Meas Sci Technol 11(7):969–986CrossRefGoogle Scholar
  51. 51.
    Kays WM, Crawford ME, Weigand B (2005) Convective heat and mass transfer, 4th edn. Mc-Graw-Hill. ISBN 0–07-246876-9Google Scholar
  52. 52.
    Kallinderis Y, Khawaja A, McMorris H (1996) Hybrid prismatic/tetrahedral grid generation for viscous flows around complex configurations. AIAA J 34(2):291–298CrossRefzbMATHGoogle Scholar
  53. 53.
    [FLUENT] ANSYS FLUENT User’s Guide (2009) Version 12, ANSYS IncGoogle Scholar
  54. 54.
    Baehr HD, Stephan K (2011) Heat and mass transfer, 3rd edn. Springer, HeidelbergCrossRefGoogle Scholar
  55. 55.
    Kok KD (ed) (2009) Nuclear engineering handbook. CRC Press/Taylor & Francis Group, Boca Raton, London, New YorkGoogle Scholar
  56. 56.
    McAdams WH (1954) Heat transmission, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  57. 57.
    Maurer M, von Wolfersdorf J, Gritsch M (2007) An experimental and numerical study of heat transfer and pressure losses of V- and W-shaped ribs at high Reynolds numbers. In: Proceedings of 2007 ASME turbo expo (Montreal, Canada) 4 (Pts. A & B): 219–228Google Scholar
  58. 58.
    Xie G, Sunden B, Utriainen E, Wang L (2010) Computational analysis of pin-fin arrays effects on internal heat transfer enhancement of a blade tip wall. Trans ASME J Heat Transf 132(3):Paper 031901Google Scholar
  59. 59.
    Petukhov BS, Irvine TF, Hartnett JP (1970) Advances in heat transfer 6. Academic Press, New YorkGoogle Scholar
  60. 60.
    Han JC, Dutta S, Ekkad S (2013) Gas turbine heat transfer and cooling technology, 2nd edn. CRC Press/Taylor & Francis Group, Boca Raton, FloridaGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.MBtech Group GmbH and Co. KGaA, Powertrain SolutionsFellbach-SchmidenGermany

Personalised recommendations