Advertisement

Heat and Mass Transfer of a Rotating Disk for Large Prandtl and Schmidt Numbers

  • Igor V. ShevchukEmail author
Chapter
  • 1.3k Downloads
Part of the Mathematical Engineering book series (MATHENGIN)

Abstract

This Chapter presents revised more accurate equations, which should be employed to recalculate the data for turbulent mass transfer for naphthalene sublimation in air to the conditions of heat transfer in air. This Chapter outlines also a novel methodology for simulations of temperature/concentration profiles for the Prandtl and Schmidt numbers much larger than unity. The present integral method further developed in this chapter enabled evaluating a relative thickness of the thermal/diffusion boundary layers, which has not been performed by other investigators. It was demonstrated that the model with a decreasing relative thickness of the boundary layers yields a new summand in the expression for the exponent at the Reynolds number, which determines functional dependence of Nusselt or Sherwood numbers.

Keywords

Reynolds Number Nusselt Number Mass Transfer Coefficient Schmidt Number Sherwood Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alden J (1994) Computational electrochemistry. D. Phil. thesis. Chapter 7, Oxford University, Oxford, UKGoogle Scholar
  2. 2.
    Awad MM (2008) Heat transfer from a rotating disk to fluids for a wide range of Prandtl numbers using the asymptotic model. Trans ASME J Heat Transfer 130(1):014505CrossRefGoogle Scholar
  3. 3.
    Barcia OE, Mangiavacchi N, Mattos OR, Pontes J, Tribollet B (2008) Rotating disk flow in electrochemical cells: a coupled solution for hydrodynamic and mass equations. J Electrochem Soc 155(5):D424–D427CrossRefGoogle Scholar
  4. 4.
    Daguenet M (1968) Etude du transport de matière en solution, a l’aide des électrodes a disque et a anneau tournants. Int J Heat Mass Transfer 11(11):1581–1596CrossRefGoogle Scholar
  5. 5.
    Deslouis C, Tribollet B, Viet L (1980) Local and overall mass transfer rates to a rotating disk in turbulent and transition flows. Electrochim Acta 25(8):1027–1032CrossRefGoogle Scholar
  6. 6.
    Dong Q, Santhanagopalan S, White RE (2008) A comparison of numerical solutions for the fluid motion generated by a rotating disk electrode. J Electrochem Soc 155(9):B963–B968CrossRefGoogle Scholar
  7. 7.
    Dossenbach O (1976) Simultaneous laminar and turbulent mass transfer at a rotating disk electrode. Berichte der Bunsen-Gesellschaft—Physical Chemistry Chemical Physics 80(4):341–343CrossRefGoogle Scholar
  8. 8.
    Ellison BT, Cornet I (1971) Mass transfer to a rotating disk. J Electrochem Soc 118(1):68–72CrossRefGoogle Scholar
  9. 9.
    Kawase Y, De A (1982) Turbulent mass transfer from a rotating disk. Electrochim Acta 27(10):1469–1473CrossRefGoogle Scholar
  10. 10.
    Law CG, Jr, Pierini P, Newman J (1981) Mass transfer to rotating disks and rotating rings in laminar, transition and fully-developed turbulent flow. Int J Heat Mass Transfer 24(5):909–918Google Scholar
  11. 11.
    Levich VG (1962) Physicochemical hydrodynamics. Prentice-Hall Inc, Englewood CliffsGoogle Scholar
  12. 12.
    Mohr CM, Newman J (1976) Mass transfer to a rotating disk in transitional flow. J Electrochem Soc 123(11):1687–1691CrossRefGoogle Scholar
  13. 13.
    Newman JS (1991) Electrochemical systems, 2nd edn. Prentice-Hall Inc, Englewood Cliffs, New YorkGoogle Scholar
  14. 14.
    Şara ON, Erkmen J, Yapici S, Çopur M (2008) Electrochemical mass transfer between an impinging jet and a rotating disk in a confined system. Int Commun Heat Mass Transfer 35(3):289–298CrossRefGoogle Scholar
  15. 15.
    Chen Y-M, Lee W-T, Wu S-J (1998) Heat (mass) transfer between an impinging jet and a rotating disk. Heat Mass Transfer 34(2–3):101–108Google Scholar
  16. 16.
    Cho HH, Rhee DH (2001) Local heat/mass transfer measurement on the effusion plate in impingement/effusion cooling systems. Trans ASME J Turbomach 123(3):601–608CrossRefGoogle Scholar
  17. 17.
    Cho HH, Won CH, Ryu GY, Rhee DH (2003) Local heat transfer characteristics in a single rotating disk and co-rotating disks. Microsyst Technol 9(6–7):399–408CrossRefGoogle Scholar
  18. 18.
    He Y, Ma LX, Huang S (2005) Convection heat and mass transfer from a disk. Heat Mass Transfer 41(8):766–772CrossRefGoogle Scholar
  19. 19.
    Janotková E, Pavelek M (1986) A naphthalene sublimation method for predicting heat transfer from a rotating surface. Strojnícky časopis 37(3):381–393 (in Czech)Google Scholar
  20. 20.
    Koong S-S, Blackshear PL Jr (1965) Experimental measurement of mass transfer from a rotating disk in a uniform stream. Trans ASME J Heat Transfer 85:422–423CrossRefGoogle Scholar
  21. 21.
    Kreith F, Taylor JH, Chong JP (1969) Heat and mass transfer from a rotating disk. Trans ASME J Heat Transfer 81:95–105Google Scholar
  22. 22.
    Mabuchi I, Kotake Y, Tanaka T (1972) Studies of convective heat transfer from a rotating disk (6th report, experiment on the laminar mass transfer from a stepwise discontinuous naphthalene disk rotating in a uniformed forced stream). Bull JSME 15(84):766–773CrossRefGoogle Scholar
  23. 23.
    Shevchuk IV (2008) A new evaluation method for Nusselt numbers in naphthalene sublimation experiments in rotating-disk systems. Heat Mass Transfer 44(11):1409–1415CrossRefGoogle Scholar
  24. 24.
    Shimada R, Naito S, Kumagai S, Takeyama T (1987) Enhancement of heat transfer from a rotating disk using a turbulence promoter. JSME Int J, Ser B 30(267):1423–1429CrossRefGoogle Scholar
  25. 25.
    Sparrow EM, Chaboki A (1982) Heat transfer coefficients for a cup-like cavity rotating about its own axis. Int J Heat Mass Transfer 9(25):1334–1341Google Scholar
  26. 26.
    Tien CL, Campbell DT (1963) Heat and mass transfer from rotating cones. J Fluid Mech 17:105–112CrossRefzbMATHGoogle Scholar
  27. 27.
    Wang M, Zeng J (2011) Convective heat transfer of the different texture on the circumferential surface of coupling movement (rotating speed coupling with air velocity) disk. Proc 2011 ICETCE. Lushan, China, pp 1128–1132Google Scholar
  28. 28.
    Wu Y, Wu M, Zhang Y, Wang L (2014) Experimental study of heat and mass transfer of a rolling wheel. Heat Mass Transfer 50(2):151–159CrossRefGoogle Scholar
  29. 29.
    Zeng JM, He Y, Wang MH, Ma LX (2011) Analogy study on convection heat transfer on the circumferential surface of rotating disc with naphthalene sublimation. J Qingdao Univ Sci Technol (Natural Sci Ed) 32(5):514–517Google Scholar
  30. 30.
    Shevchuk IV (2009) Convective heat and mass transfer in rotating disk systems. Springer, BerlinCrossRefzbMATHGoogle Scholar
  31. 31.
    Dorfman LA (1963) Hydrodynamic resistance and the heat loss of rotating solids. Oliver and Boyd, EdinburghGoogle Scholar
  32. 32.
    Sparrow EM, Gregg JL (1959) Heat transfer from a rotating disc to fluids at any Prandtl number. Trans ASME J Heat Transfer 81:249–251Google Scholar
  33. 33.
    Cheng W-T, Lin H-T (1994) Unsteady and steady mass transfer by laminar forced flow against a rotating disk. Wärme und Stoffübertragung 30(2):101–108Google Scholar
  34. 34.
    Lin H-T, Lin L-K (1987) Heat transfer from a rotating cone or disk to fluids at any Prandtl number. Int Commun Heat Mass Transfer 14(3):323–332CrossRefGoogle Scholar
  35. 35.
    Bogdan Z (1982) Cooling of a rotating disk by means of an impinging Jet. Proc 7th IHTC “Heat Transfer 1982”. Munich, Germany, vol 3, pp 333–336Google Scholar
  36. 36.
    Elkins CJ, Eaton JK (1997) Heat transfer in the rotating disk boundary layer. Stanford University, Department of Mechanical Engineering, Thermosciences Division Report TSD–103. Stanford University (USA)Google Scholar
  37. 37.
    Popiel CO, Boguslawski L (1975) Local heat-transfer coefficients on the rotating disk in still air. Int J Heat Mass Transfer 18(1):167–170CrossRefGoogle Scholar
  38. 38.
    Shevchuk IV (2000) Turbulent heat transfer of rotating disk at constant temperature or density of heat flux to the wall. High Temp 38(3):499–501CrossRefGoogle Scholar
  39. 39.
    Shevchuk IV (2005) A new type of the boundary condition allowing analytical solution of the thermal boundary layer equation. Int J Thermal Sci 44(4):374–381CrossRefGoogle Scholar
  40. 40.
    Shevchuk IV (2009) An integral method for turbulent heat and mass transfer over a rotating disk for the Prandtl and Schmidt numbers much larger than unity. Heat Mass Transfer 45(10):1313–1321CrossRefGoogle Scholar
  41. 41.
    Wasan DT, Tien CL, Wilke CR (1963) Theoretical correlation of velocity and eddy viscosity for flow close to a pipe wall. AIChE J 9(4):567–569CrossRefGoogle Scholar
  42. 42.
    Paterson JA, Greif R (1973) Transport to a rotating disk in turbulent flow at high Prandtl or Schmidt number. Trans ASME J Heat Transfer 95(4):566–568CrossRefGoogle Scholar
  43. 43.
    Mishra P, Singh PC (1978) Mass transfer from spinning disks. Chem Eng Sci 33(11):1449–1461CrossRefGoogle Scholar
  44. 44.
    von Karman Th (1921) Über laminare und turbulente Reibung. Z Angew Math Mech 1(4):233–252CrossRefzbMATHGoogle Scholar
  45. 45.
    Owen JM, Rogers RH (1989) Flow and heat transfer in rotating-disc systems. In: Rotor-stator systems, vol 1. Research Studies Press Ltd., Taunton, Somerset, EnglandGoogle Scholar
  46. 46.
    Littel HS, Eaton JK (1994) Turbulence characteristics of the boundary layer on a rotating disk. J Fluid Mech 266:175–207CrossRefGoogle Scholar
  47. 47.
    Itoh M, Hasegawa I (1994) Turbulent boundary layer on a rotating disk in infinite quiescent fluid. JSME Int J Ser B 37(3):449–456CrossRefGoogle Scholar
  48. 48.
    Kader BA (1981) Temperature and concentration profiles in fully turbulent boundary layers. Int J Heat Mass Transfer 24(9):1541–1544CrossRefGoogle Scholar
  49. 49.
    Suga K (2007) Computation of high Prandtl number turbulent thermal fields by the analytical wall-function. Int J Heat Mass Transfer 50(25–26):4967–4974CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.MBtech Group GmbH and Co. KGaA, Powertrain SolutionsFellbach-SchmidenGermany

Personalised recommendations