Advertisement

Free Rotating Disk

  • Igor V ShevchukEmail author
Chapter
  • 1.3k Downloads
Part of the Mathematical Engineering book series (MATHENGIN)

Abstract

This chapter represents a validation of the present integral method for the case of a single rotating disk. It was shown that the present integral method is essentially more accurate and enables modelling a wider range of the thermal boundary conditions than the methods of other authors. The novel analytical solution for temperature difference depending on two parameters provides a much better agreement of the Nusselt number with the experiments and significantly expands possibilities for analytical predictions of heat transfer rates over a rotating disk subject to arbitrary thermal boundary conditions. This chapter delivers also a critical overview of the most important experimental results for transitional flow, recommendations for estimation of average heat transfer of an entire disk and briefly outlines some aspects of transient heat transfer over a single rotating disk.

Keywords

Heat Transfer Reynolds Number Heat Transfer Coefficient Nusselt Number Laminar Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Shevchuk IV (2009) Convective heat and mass transfer in rotating disk systems. Springer, Berlin, HeidelbergCrossRefzbMATHGoogle Scholar
  2. 2.
    Dorfman LA (1963) Hydrodynamic resistance and the heat loss of rotating solids. Oliver and Boyd, Edinburgh, UKGoogle Scholar
  3. 3.
    Owen JM, Rogers RH (1989) Flow and heat transfer in rotating-disc systems. Volume 1: rotor-stator systems. Research Studies Press Ltd., Taunton, Somerset, EnglandGoogle Scholar
  4. 4.
    Owen JM, Rogers RH (1995) Flow and heat transfer in rotating-disc systems Volume 2: rotating cavities. Research Studies Press Ltd., Taunton, Somerset, EnglandGoogle Scholar
  5. 5.
    Schlichting G (1968) Boundary-layer theory. McGraw-Hill Book Company, New YorkGoogle Scholar
  6. 6.
    Elkins CJ, Eaton JK (1997) Heat transfer in the rotating disk boundary layer. Stanford University, Department of Mechanical Engineering, Thermosciences Division Report TSD–103. Stanford University, USAGoogle Scholar
  7. 7.
    Itoh M, Hasegawa I (1994) Turbulent boundary layer on a rotating disk in infinite quiescent fluid. JSME Int J Ser B 37(3):449–456CrossRefGoogle Scholar
  8. 8.
    Lingwood RJ (1996) An experimental study of absolute instability of the rotating-disk boundary-layer flow. J Fluid Mech 314:373–405CrossRefGoogle Scholar
  9. 9.
    Theodorsen Th, Regier A (1944) Experiments on drag of revolving discs, cylinders and streamline rods at high speeds. NASA Report No 793Google Scholar
  10. 10.
    Kempf G. (1924) Über Reibungswiderstand rotierender Scheiben. Vorträge auf dem Gebiet der Hydro- und Aerodynamik, Innsbrucker Kongress, 1922. Berlin, p 22Google Scholar
  11. 11.
    Schmidt W (1921) Ein einfaches Messverfahren für Drehmomente. Z VDI 65:411–444Google Scholar
  12. 12.
    Littel HS, Eaton JK (1994) Turbulence characteristics of the boundary layer on a rotating disk. J Fluid Mech 266:175–207CrossRefGoogle Scholar
  13. 13.
    Elkins CJ, Eaton JK (2000) Turbulent heat and momentum transfer on a rotating disk. J Fluid Mech 402:225–253CrossRefzbMATHGoogle Scholar
  14. 14.
    Parthasarathy RN (2002) Analysis of the turbulent boundary layer on a rotating disk. Microsyst Technol 8(4–5):278–281CrossRefGoogle Scholar
  15. 15.
    Bogdan Z (1982) Cooling of a rotating disk by means of an impinging jet. In: Proceedings of 7th IHTC heat transfer 1982, vol 3. Munich, Germany, pp 333–336Google Scholar
  16. 16.
    Chen Y-M, Lee W-T, Wu S-J (1998) Heat (mass) transfer between an impinging jet and a rotating disk. Heat Mass Transfer 34(2–3):101–108Google Scholar
  17. 17.
    Cobb EC, Saunders OA (1956) Heat transfer from a rotating disk. In: Proceedings of the Royal Society A, vol 236, pp 343–349Google Scholar
  18. 18.
    Janotková E, Pavelek M (1986) A naphthalene sublimation method for predicting heat transfer from a rotating surface. Strojnícky časopis 37(3):381–393 (in Czech)Google Scholar
  19. 19.
    Janotková E, Pavelek M (1993) Application of interferometry to temperature field measurements in neighbourhood of rotating discs. In: Proceedings of 11th CHISA 93. Paper No 0015, Prague, Czech RepublicGoogle Scholar
  20. 20.
    Kreith F, Taylor JH, Chong JP (1969) Heat and mass transfer from a rotating disk. Trans ASME J Heat Transfer 81:95–105Google Scholar
  21. 21.
    Pavelek M, Janotková E (1989) Surface temperature calculation for applying naphthalene sublimation method on rotating disks. In: Proceedings of 6th conference thermogrammetry thermal engineering. Budapest, Hungary, pp 111–115Google Scholar
  22. 22.
    Pavelek M, Janotková E (1996) An experimental study of heat transfer from co-rotating disks. Proceedings of 12th CHISA 96, Paper G 8.48, Prague, Czech RepublicGoogle Scholar
  23. 23.
    Popiel CO, Boguslawski L (1975) Local heat-transfer coefficients on the rotating disk in still air. Int J Heat Mass Transfer 18(1):167–170Google Scholar
  24. 24.
    Shimada R, Naito S, Kumagai S, Takeyama T (1987) Enhancement of heat transfer from a rotating disk using a turbulence promoter. JSME Int J Ser B 30(267):1423–1429CrossRefGoogle Scholar
  25. 25.
    Sparrow EM, Chaboki A (1982) Heat transfer coefficients for a cup-like cavity rotating about its own axis. Int J Heat Mass Transfer 9(25):1334–1341Google Scholar
  26. 26.
    Shevchuk IV (2000) Turbulent heat transfer of rotating disk at constant temperature or density of heat flux to the wall. High Temp 38(3):499–501CrossRefGoogle Scholar
  27. 27.
    Cardone G, Astarita T, Carlomagno GM (1996) Infrared heat transfer measurements on a rotating disk. Opt Diagn Eng 1(2):1–7Google Scholar
  28. 28.
    Cardone G, Astarita T, Carlomagno GM (1997) Heat transfer measurements on a rotating disk. Int J Rotating Mach 3(1):1–9CrossRefGoogle Scholar
  29. 29.
    Shevchuk IV (2001) Effect of the wall temperature on laminar heat transfer in a rotating disk: an approximate analytical solution. High Temp 39(4):637–640CrossRefGoogle Scholar
  30. 30.
    Shevchuk IV (2001) An improved enthalpy-thickness model for predicting heat transfer of a free rotating disk using an integral method. In: Proceedings of 35th ASME NHTC’01. Paper NHTC2001–20195, Anaheim, California, USAGoogle Scholar
  31. 31.
    Cheng W-T, Lin H-T (1994) Unsteady and steady mass transfer by laminar forced flow against a rotating disk. Wärme und Stoffübertragung 30(2):101–108Google Scholar
  32. 32.
    Lin H-T, Lin L-K (1987) Heat transfer from a rotating cone or disk to fluids at any Prandtl number. Int Commun Heat Mass Transfer 14(3):323–332CrossRefGoogle Scholar
  33. 33.
    Sparrow EM, Gregg JL (1959) Heat transfer from a rotating disc to fluids at any Prandtl number. Trans ASME J Heat Transfer 81:249–251Google Scholar
  34. 34.
    Smith NH (1946) Exploratory investigation of laminar boundary layer oscillations on a rotating disc. NACA Tech Note 1227:1–21Google Scholar
  35. 35.
    Gregory N, Stuart JT, Walker WS (1955) On the stability of three-dimensional boundary layers with application to the flow due to a rotating disk. Phil Trans Roy Soc Ser A 248:155–199MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Corke TC, Knasiak KF (1998) Stationary travelling cross-flow mode interactions on a rotating disk. J Fluid Mech 355:285–315MathSciNetCrossRefGoogle Scholar
  37. 37.
    Fedorov BI, Plavnik GZ, Prokhorov IV, Zhukhovitskii LG (1976) Transitional flow conditions on a rotating disk. J Eng Phys 31:1448–1453CrossRefGoogle Scholar
  38. 38.
    Jarre S, Le Gal P, Chauve MP (1996) Experimental study of rotating disk instability. I. Natural flow. Phys Fluids 8(2):496–508Google Scholar
  39. 39.
    Jarre S, Le Gal P, Chauve MP (1996) Experimental study of rotating disk instability II. Forced flow. Phys Fluids 8(11):2985–2994CrossRefGoogle Scholar
  40. 40.
    Malik MR, Wilkinson SP, Orzag SA (1981) Instability and transition in a rotating disc. AIAA J 19(9):1131–1138CrossRefGoogle Scholar
  41. 41.
    Wilkinson SP, Malik MR (1985) Stability experiments in the flow over a rotating disk. AIAA J 23(4):588–595CrossRefGoogle Scholar
  42. 42.
    Chin D, Litt M (1972) An electrochemical study of flow instability on rotating disk. J Fluid Mech 54:613–625CrossRefGoogle Scholar
  43. 43.
    Cochran WG (1934) The flow due to a rotating disk. In: Proceedings of Cambridge philosophical society, vol 30, pp 365–375Google Scholar
  44. 44.
    Cooper AJ, Carpenter PW (1997) The stability of rotating-disc boundary-layer flow over a compliant wall. Part 1. Type I and II instabilities. J Fluid Mech 350:231–259MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Hall P (1986) An asymptotic investigation of the stationary modes of instability of the boundary layer on a rotating disk. In: Proceedings of royal society of London A, vol 406, no 1830, pp 93–106Google Scholar
  46. 46.
    Kohama Y (1983) Study on boundary layer transition of a rotating disk. Acta Mech 50(3–4):193–199Google Scholar
  47. 47.
    Lingwood RJ (1995) Absolute instability of the boundary layer on a rotating disk. J Fluid Mech 299:17–33MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Lingwood RJ (1997) Absolute instability of the Ekman layer and related rotating flows. J Fluid Mech 331:405–428MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Malik MR (1986) The neutral curve for stationary disturbances in rotating-disk flow. J Fluid Mech 164:275–287CrossRefzbMATHGoogle Scholar
  50. 50.
    Ong CL, Owen JM (1991) Computation of the flow and heat transfer due to a rotating disc. Int J Heat Fluid Flow 12(2):106–115CrossRefGoogle Scholar
  51. 51.
    Pier B (2003) Finite-amplitude crossflow vortices, secondary instability and transition in the rotating-disk boundary layer. J Fluid Mech 487:315–343MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Sahin I (1988) Applications of various coordinate transformations for rotating disk flow stability. AIAA J 26(3):368–370MathSciNetCrossRefGoogle Scholar
  53. 53.
    Szeri AZ, Giron A (1984) Stability of flow over a rotating disk. Int J Numer Methods Fluids 4(10):989–996CrossRefzbMATHGoogle Scholar
  54. 54.
    Watanabe T (1985) Stability of boundary layers along a rotating disk. Trans JSME Ser B 51(470):3344–3347CrossRefGoogle Scholar
  55. 55.
    Isachenko VP, Osipova VA, Sukomel AS (1977) Heat transfer. Mir Publishers, Moscow, USSRGoogle Scholar
  56. 56.
    Kobayashi R, Kohama Y, Takamadate Ch (1980) Spiral vortices in boundary layer transition regime on a rotating disk. Acta Mech 35(1–2):71–82CrossRefzbMATHGoogle Scholar
  57. 57.
    Zoueshtiagh F, Ali R, Cooley AJ, Thomas PJ, Carpenter PW (2003) Laminar-turbulent boundary-layer transition over a rough rotating disk. Phys Fluids 15(8):2441–2444CrossRefGoogle Scholar
  58. 58.
    Watanabe T (1989) Effect of surface roughness on boundary layer transition on a rotating disk. Trans JSME Ser B 55(515):1842–1846CrossRefGoogle Scholar
  59. 59.
    Gregory N, Walker WS (1960) Experiments on the effect of suction on the flow due to a rotating disk. J Fluid Mech 9:225–234CrossRefzbMATHGoogle Scholar
  60. 60.
    Clarkson MH, Chin SC, Shacter P (1980) Flow visualization of inflexional instabilities on a rotating disk. AIAA 80–0279:1–14Google Scholar
  61. 61.
    Dennis RW, Newstead C, Ede AJ (1970) The heat transfer from a rotating disc in an air crossflow. In: Proceedings of IV IHTC, vol 3. Paper no FC 7.1, Paris-Versailles, FranceGoogle Scholar
  62. 62.
    Trinkl CM, Bardas U, Weyck A, aus der Wiesche S (2011) Experimental study of the convective heat transfer from a rotating disc subjected to forced air streams. Int J Thermal Sci 50(1):73–80CrossRefGoogle Scholar
  63. 63.
    Pellé J, Harmand S (2007) Heat transfer study in a discoidal system: the influence of an impinging jet and rotation. Experim Heat Transfer 20(4):337–358CrossRefGoogle Scholar
  64. 64.
    Tien CL, Campbell DT (1963) Heat and mass transfer from rotating cones. J Fluid Mech 17:105–112CrossRefzbMATHGoogle Scholar
  65. 65.
    Daguenet M (1968) Etude du transport de matière en solution, a l’aide des électrodes a disque et a anneau tournants. Int J Heat Mass Transfer 11(11):1581–1596CrossRefGoogle Scholar
  66. 66.
    Dossenbach O (1976) Simultaneous laminar and turbulent mass transfer at a rotating disk electrode. Berichte der Bunsen-Gesellschaft Phys Chem Chem Phys 80(4):341–343CrossRefGoogle Scholar
  67. 67.
    Mohr CM, Newman J (1976) Mass transfer to a rotating disk in transitional flow. J Electrochem Soc 123(11):1687–1691CrossRefGoogle Scholar
  68. 68.
    Deslouis C, Tribollet B, Viet L (1980) Local and overall mass transfer rates to a rotating disk in turbulent and transition flows. Electrochim Acta 25(8):1027–1032CrossRefGoogle Scholar
  69. 69.
    Le Palec G (1989) Numerical study of convective heat transfer over a rotating rough disk with uniform wall temperature. Int Commun Heat Mass Transfer 16(1):107–113CrossRefGoogle Scholar
  70. 70.
    Le Palec G, Nardin P, Rondot P (1990) Study of laminar heat transfer over a sinusoidal—shaped rotating disk. Int J Heat Mass Transfer 33(6):1183–1192CrossRefGoogle Scholar
  71. 71.
    von Karman Th (1921) Über laminare und turbulente Reibung. Z Angew Math Mech 1(4):233–252CrossRefzbMATHGoogle Scholar
  72. 72.
    Cham T-S, Head TR (1969) Turbulent boundary-layer flow on a rotating disk. J Fluid Mech 37(1):129–147CrossRefGoogle Scholar
  73. 73.
    Shvets IT, Dyban EP (1974) Air cooling of gas turbine parts. Naukova Dumka, Kiev, Ukraine (in Russian)Google Scholar
  74. 74.
    Shevchuk IV, Khalatov AA (1997) Integral method for calculating the characteristics of a turbulent boundary layer on a rotating disk: quadratic approximation of the tangent of the flow swirl angle. Heat Transfer Res 28(4–6):402–413CrossRefGoogle Scholar
  75. 75.
    Shevchuk IV (1999) Simulation of heat transfer and hydrodynamics over a free rotating disk using an improved radial velocity profile. J Thermal Sci 8(4):243–249MathSciNetCrossRefGoogle Scholar
  76. 76.
    Abrahamson S, Lonnes S (1993) An integral method for turbulent boundary layers on rotating disks. Trans ASME J Fluids Eng 115(4):614–619CrossRefGoogle Scholar
  77. 77.
    Kapinos VM (1964) Hydraulic resistance and heat transfer of a free disc with a cob. Izvestiya vuzov Energetika 11:85–92 (in Russian)Google Scholar
  78. 78.
    Case P (1966) Measurements of entrainment by a free rotating disk. J Roy Aero Soc 71:124–129Google Scholar
  79. 79.
    Kabkov VIa (1974) Characteristics of turbulent boundary-layer on a smooth disk rotating in a large volume. Teplofizika i Teplotekhnika Naukova Dumka Kiev 28:119–124 (in Russian)Google Scholar
  80. 80.
    Goldstein S (1935) On the resistance to the rotation of a disc immersed in a fluid. Proc Cambridge Phil Soc 31:232–241CrossRefzbMATHGoogle Scholar
  81. 81.
    Buznik VM, Artemov GA, Bandura VN, Kardashev YD, Fedorovskiy AM (1966) Heat transfer of a flat disk rotating in quiescent environment, Izvestiya vuzov. Energetika 1:84–86 (in Russian)Google Scholar
  82. 82.
    Kuznetsov AL (1962) Experimental investigation of heat transfer from a disk rotating in quiescent environment. Trudy Leningrad Korablestroit Inst 38:183–186. (in Russian)Google Scholar
  83. 83.
    Nikitenko NI (1963) Experimental investigation of heat exchange of a disk and a screen. J Eng Phys 6(6):1–11Google Scholar
  84. 84.
    McComas ST, Hartnett JP (1970) Temperature profiles and heat transfer associated with a single disc rotating in still air. In: Proceedings of IV IHTC, vol 3. Paper FC 7.7, Paris-Versailles, FranceGoogle Scholar
  85. 85.
    Tadros SE, Erian FF (1983) Heat and momentum transfer in the turbulent boundary layer near a rotating disk. Paper ASME 83–WA/HT–6Google Scholar
  86. 86.
    Northrop A, Owen JM (1988) Heat transfer measurements in rotating-disc systems. Part 1: The free disc. Int J Heat Fluid Flow 9(1):19–26Google Scholar
  87. 87.
    Northrop A (1984) Heat transfer in a cylindrical rotating cavity. D. Phil. thesis. University of Sussex, Brighton, UKGoogle Scholar
  88. 88.
    Johnson MC (1980) Turbulent heat transfer to a rotating disk: a review and extension of Dorfman. Trans ASME J Heat Transfer 102(4):780–781CrossRefGoogle Scholar
  89. 89.
    Shevchuk IV (1998) Simulation of heat transfer in a rotating disk: the effect of approximation of the tangent of the angle of flow swirling. High Temp 36(3):522–524MathSciNetGoogle Scholar
  90. 90.
    Cebeci T, Bradshaw P (1984) Physical and computational aspects of convective heat transfer. Springer, Berlin, HeidelbergCrossRefzbMATHGoogle Scholar
  91. 91.
    Shevchuk IV (2002) Numerical modeling of turbulent heat transfer in a rotating disk at arbitrary distribution of the wall temperature. J Eng Phys Thermophys 75(4):885–888CrossRefGoogle Scholar
  92. 92.
    Shevchuk IV, Saniei N, Yan XT (2001) Effect of the wall temperature distribution in direct and inverse problems of laminar heat transfer over a free rotating disk. In: Proceedings of 35th ASME NHTC’01. Paper NHTC2001–20196, Anaheim, California, USAGoogle Scholar
  93. 93.
    Shevchuk IV (2001) Turbulent heat transfer over a free rotating disk: analytical and numerical predictions using solutions of direct and inverse problems. In: Proceedings of IMECE’01. New York, USA, pp 1–8Google Scholar
  94. 94.
    Saniei N, Yan X (1998) Effect of jet location on impingement cooling of a rotating disk. Proc ASME HTD 361:203–210Google Scholar
  95. 95.
    Saniei N, Yan XT, Schooley WW (1998) Local heat transfer characteristics of a rotating disk under jet impingement cooling. Proc 11th IHTC Heat Transfer 5:445–450Google Scholar
  96. 96.
    Saniei N, Yan XT (2000) An experimental study of heat transfer from a disk rotating in an infinite environment including heat transfer enhancement by jet impingement cooling. J Enhanced Heat Transfer 7:231–245CrossRefGoogle Scholar
  97. 97.
    Shevchuk IV (2005) A new type of the boundary condition allowing analytical solution of the thermal boundary layer equation. Int J Thermal Sci 44(4):374–381CrossRefGoogle Scholar
  98. 98.
    Baughn JW, Ireland PT, Jones TV, Saniei N (1989) A comparison of the transient and heated-coating methods for measurement of local heat transfer coefficients on pin fin. Trans ASME J Heat Transfer 111(4):877–881CrossRefGoogle Scholar
  99. 99.
    Harmand S, Pellé J, Poncet S, Shevchuk IV (2013) Review of fluid flow and convective heat transfer within rotating disk cavities with impinging jet. Int J Thermal Sci 67:1–30CrossRefGoogle Scholar
  100. 100.
    Holman JP (1981) Heat transfer. McGraw-Hill, Inc., New YorkGoogle Scholar
  101. 101.
    Kingsley-Rowe JR, Lock GD, Owen JM (2005) Transient heat transfer measurements using thermochromic liquid crystal: lateral-conduction error. Int J Heat Fluid Flow 26(2):256–263CrossRefGoogle Scholar
  102. 102.
    Lock GD, Daguze F, Syson BJ, Owen JM (1996) The application of thermal imaging techniques to determine heat transfer coefficients for slow thermal transients. In: Proceedings of 13th Symposium measuring techniques transonic supersonic flows in Cascades and Turbomach. Zurich, Switzerland, pp 1–7Google Scholar
  103. 103.
    Martinez-Botaz RF, Lock GD, Jones TV (1994) Heat transfer measurements in an annular cascade of transonic gas turbine blades using the transient liquid crystal technique. ASME Paper 94-GT-172, pp 1–8Google Scholar
  104. 104.
    Roy RP, Xu G, Feng J (2001) A study of convective heat transfer in a model rotor-stator disk cavity. Trans ASME J Turbomach 123(3):621–632CrossRefGoogle Scholar
  105. 105.
    Wagner G, Kotulla M, Ott P, Weigand B, von Wolfersdorf J (2005) The transient liquid crystal technique: influence of surface curvature and finite wall thickness. Trans ASME J Turbomach 127(1):175–182CrossRefGoogle Scholar
  106. 106.
    Luikov AV (1968) Analytical heat diffusion theory. Academic Press, New YorkGoogle Scholar
  107. 107.
    Shevchuk IV (2004) Unsteady-state laminar heat transfer in a rotating disk: self-similar solution. High Temp 42(4):592–595CrossRefGoogle Scholar
  108. 108.
    Shevchuk IV (2006) Unsteady conjugate laminar heat transfer of a rotating non-uniformly heated disk: application to the transient experimental technique. Int J Heat Mass Transfer 49(19–20):3530–3537CrossRefzbMATHGoogle Scholar
  109. 109.
    Schultz DL, Jones TV (1973) Heat transfer measurements in short duration hypersonic facilities. Aeronautical RD AGARDOGRAPH, NATO Advisory Group, p 165Google Scholar
  110. 110.
    Vogel G, Weigand B (2001) A new evaluation method for transient liquid crystal experiments. In: Proceedings 35th ASME NHTC’01. Paper NHTC2001–20250, Anaheim, California, USAGoogle Scholar
  111. 111.
    Shevchuk IV, Indinger T (2005) Transient conjugate heat transfer of a disk rotating in still air. In: Proceedings 4th international conference computational heat mass transfer. Paper ICCHMT’05–150, Paris, FranceGoogle Scholar
  112. 112.
    Weisstein EW (2002) Hypergeometric function. MathWorld. A Wolfram Web ResourceGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.MBtech Group GmbH and Co. KGaA, Powertrain SolutionsFellbach-SchmidenGermany

Personalised recommendations