Skip to main content

Right Heart Stress Echocardiography

  • Chapter
Stress Echocardiography

Abstract

The behavior of the right side of the heart during stress has been underemphasized and sparsely investigated by cardiologists and pneumologists. Reasons vary, but the right ventricle has traditionally been considered a passive conduit between the venous system and the lungs largely because of early animal experiments showing no increase of central venous pressure after the free wall of the right ventricle had been destroyed [1–3]. In addition, echocardiography of the right heart is less well standardized [4] as imaging of the left ventricle. Recent pathophysiological, clinical, and prognostic data have defined an important role for the right ventricle in many conditions, including ischemic heart disease and heart failure. Given that the right ventricle and the left ventricle share a common septum, have an overlapping blood supply, and are bound together by the pericardium, changes induced by myocardial ischemia and/or heart failure are reflected in pulmonary hemodynamics and right ventricular function [5]. Modern Doppler echocardiography allows a systematic evaluation of five key aspects of cardiopulmonary pathophysiology during stress: segmental right ventricular function; global right ventricular longitudinal function; coronary flow reserve in the posterior descending of the right coronary artery; indices of pulmonary hemodynamics, namely, pulmonary artery systolic pressure, pulmonary velocity time integrals, and pulmonary vascular resistances; and extravascular lung water in the lung, mirroring the distress of the alveolar–capillary membrane. Technical improvements were also matched by a greater understanding of the complexity and the clinical relevance of the adaptation of the right heart (functionally including pulmonary circulation and lung alveolar–capillary membrane) in several pathological conditions, from coronary artery disease to heart failure [5]. In many situations, it is not possible to fully understand heart disease if we do not look at the right heart and pulmonary stress hemodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Starr I (1943) Clinical studies on incoordination of the circulation, as determined by the response to arising. J Clin Invest 22:813–826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Kagan A (1952) Dynamic responses of the right ventricle following extensive damage by cauterization. Circulation 5:816–823

    Article  CAS  PubMed  Google Scholar 

  3. Donald DE, Essex HE (1954) Massive destruction of the myocardium of the canine right ventricle; a study of the early and late effects. Am J Physiol 177:477–488

    CAS  PubMed  Google Scholar 

  4. Lewis GD, Bossone E, Naeije R et al (2013) Pulmonary vascular hemodynamic response to exercise in cardiopulmonary diseases. Circulation 128:1470–1479

    Article  PubMed  Google Scholar 

  5. Rigolin VH, Robiolio PA, Wilson JS, Harrison JK, Bashore TM (1995) The forgotten chamber: the importance of the right ventricle. Cathet Cardiovasc Diagn 35:18–28

    Article  CAS  PubMed  Google Scholar 

  6. Rudski LG, Lai WW, Afilalo J et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23:685–713; quiz 86–88

    Article  PubMed  Google Scholar 

  7. Parodi O, Marzullo P, Neglia D et al (1984) Transient predominant right ventricular ischemia caused by coronary vasospasm. Circulation 70:170–177

    Article  CAS  PubMed  Google Scholar 

  8. Obeid AI, Battaglia J, Lozner E (1998) Right ventricular dysfunction secondary to myocardial ischemia provoked by stress testing. Echocardiography 15:451–458

    Article  PubMed  Google Scholar 

  9. Rambaldi R, Poldermans D, Fioretti PM et al (1998) Usefulness of pulse-wave Doppler tissue sampling and dobutamine stress echocardiography for the diagnosis of right coronary artery narrowing. Am J Cardiol 81:1411–1415

    Article  CAS  PubMed  Google Scholar 

  10. San Roman JA, Vilacosta I, Rollan MJ et al (1997) Right ventricular asynergy during dobutamine-atropine echocardiography. J Am Coll Cardiol 30:430–435

    Article  CAS  PubMed  Google Scholar 

  11. Bangalore S, Yao SS, Chaudhry FA (2007) Role of right ventricular wall motion abnormalities in risk stratification and prognosis of patients referred for stress echocardiography. J Am Coll Cardiol 50:1981–1989

    Article  PubMed  Google Scholar 

  12. Shah AR, Grodman R, Salazar MF, Rehman NU, Coppola J, Braff R (2000) Assessment of acute right ventricular dysfunction induced by right coronary artery occlusion using echocardiographic atrioventricular plane displacement. Echocardiography 17:513–519

    Article  CAS  PubMed  Google Scholar 

  13. Anjak A, Lopez-Candales A, Lopez FR, Harris D, Elwing J (2014) Objective measures of right ventricular function during exercise: results of a pilot study. Echocardiography 31:508–515

    Article  PubMed  Google Scholar 

  14. Kaul S, Tei C, Hopkins JM, Shah PM (1984) Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J 107:526–531

    Article  CAS  PubMed  Google Scholar 

  15. Mondillo S, Galderisi M, Ballo P, Marino PN (2006) Left ventricular systolic longitudinal function: comparison among simple M-mode, pulsed, and M-mode color tissue Doppler of mitral annulus in healthy individuals. J Am Soc Echocardiogr 19:1085–1091

    Article  PubMed  Google Scholar 

  16. Lang RM, Bierig M, Devereux RB et al (2005) Recommendations for chamber quantification: a report from the American society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18:1440–1463

    Article  PubMed  Google Scholar 

  17. Webb-Peploe KM, Henein MY, Coats AJ, Gibson DG (1998) Echo derived variables predicting exercise tolerance in patients with dilated and poorly functioning left ventricle. Heart 80:565–569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Almeida AR, Loureiro MJ, Lopes L et al (2014) Echocardiographic assessment of right ventricular contractile reserve in patients with pulmonary hypertension. Rev Port Cardiol 33:155–163

    PubMed  Google Scholar 

  19. Otasevic P, Popovic Z, Pratali L, Vlahovic A, Vasiljevic JD, Neskovic AN (2005) Right vs. left ventricular contractile reserve in one-year prognosis of patients with idiopathic dilated cardiomyopathy: assessment by dobutamine stress echocardiography. Eur J Echocardiogr 6:429–434

    Article  PubMed  Google Scholar 

  20. Ghio S, Recusani F, Klersy C et al (2000) Prognostic usefulness of the tricuspid annular plane systolic excursion in patients with congestive heart failure secondary to idiopathic or ischemic dilated cardiomyopathy. Am J Cardiol 85:837–842

    Article  CAS  PubMed  Google Scholar 

  21. Bailey DM, Rimoldi SF, Rexhaj E et al (2013) Oxidative-nitrosative stress and systemic vascular function in highlanders with and without exaggerated hypoxemia. Chest 143:444–451

    Article  CAS  PubMed  Google Scholar 

  22. Rigo F, Richieri M, Pasanisi E et al (2003) Usefulness of coronary flow reserve over regional wall motion when added to dual-imaging dipyridamole echocardiography. Am J Cardiol 91:269–273

    Article  PubMed  Google Scholar 

  23. Rigo F, Sicari R, Gherardi S, Djordjevic-Dikic A, Cortigiani L, Picano E (2008) The additive prognostic value of wall motion abnormalities and coronary flow reserve during dipyridamole stress echo. Eur Heart J 29:79–88

    Article  PubMed  Google Scholar 

  24. Sicari R, Nihoyannopoulos P, Evangelista A et al (2008) Stress echocardiography expert consensus statement: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur J Echocardiogr 9:415–437

    Article  PubMed  Google Scholar 

  25. Ueno Y, Nakamura Y, Takashima H, Kinoshita M, Soma A (2002) Noninvasive assessment of coronary flow velocity and coronary flow velocity reserve in the right coronary artery by transthoracic Doppler echocardiography: comparison with intracoronary Doppler guidewire. J Am Soc Echocardiogr 15:1074–1079

    Article  PubMed  Google Scholar 

  26. Lethen H, P Tries H, Kersting S, Lambertz H (2003) Validation of noninvasive assessment of coronary flow velocity reserve in the right coronary artery. A comparison of transthoracic echocardiographic results with intracoronary Doppler flow wire measurements. Eur Heart J 24:1567–1575

    Article  PubMed  Google Scholar 

  27. Rigo F, Murer B, Ossena G, Favaretto E (2008) Transthoracic echocardiographic imaging of coronary arteries: tips, traps, and pitfalls. Cardiovasc Ultrasound 6:7

    Article  PubMed Central  PubMed  Google Scholar 

  28. Cortigiani L, Rigo F, Sicari R, Gherardi S, Bovenzi F, Picano E (2009) Prognostic correlates of combined coronary flow reserve assessment on left anterior descending and right coronary artery in patients with negative stress echocardiography by wall motion criteria. Heart 95:1423–1428

    Article  CAS  PubMed  Google Scholar 

  29. Rigo F, Ciampi Q, Ossena G, Grolla E, Picano E, Sicari R (2011) Prognostic value of left and right coronary flow reserve assessment in nonischemic dilated cardiomyopathy by transthoracic Doppler echocardiography. J Card Fail 17:39–46

    Article  PubMed  Google Scholar 

  30. Aoki M, Harada K, Tamura M, Toyono M, Takada G (2004) Posterior descending coronary artery flow reserve assessment by Doppler echocardiography in children with and without congenital heart defect: comparison with invasive technique. Pediatr Cardiol 25:647–653

    Article  CAS  PubMed  Google Scholar 

  31. Yock PG, Popp RL (1984) Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulation 70:657–662

    Article  CAS  PubMed  Google Scholar 

  32. McQuillan BM, Picard MH, Leavitt M, Weyman AE (2001) Clinical correlates and reference intervals for pulmonary artery systolic pressure among echocardiographically normal subjects. Circulation 104:2797–2802

    Article  CAS  PubMed  Google Scholar 

  33. Grunig E, Weissmann S, Ehlken N et al (2009) Stress Doppler echocardiography in relatives of patients with idiopathic and familial pulmonary arterial hypertension: results of a multicenter European analysis of pulmonary artery pressure response to exercise and hypoxia. Circulation 119:1747–1757

    Article  PubMed  Google Scholar 

  34. Bossone E, Bodini BD, Mazza A, Allegra L (2005) Pulmonary arterial hypertension: the key role of echocardiography. Chest 127:1836–1843

    Article  PubMed  Google Scholar 

  35. Himelman RB, Stulbarg MS, Lee E, Kuecherer HF, Schiller NB (1990) Noninvasive evaluation of pulmonary artery systolic pressures during dynamic exercise by saline-enhanced Doppler echocardiography. Am Heart J 119:685–688

    Article  CAS  PubMed  Google Scholar 

  36. Chan KL, Currie PJ, Seward JB, Hagler DJ, Mair DD, Tajik AJ (1987) Comparison of three Doppler ultrasound methods in the prediction of pulmonary artery pressure. J Am Coll Cardiol 9:549–554

    Article  CAS  PubMed  Google Scholar 

  37. Dambrauskaite V, Delcroix M, Claus P et al (2005) The evaluation of pulmonary hypertension using right ventricular myocardial isovolumic relaxation time. J Am Soc Echocardiogr 18:1113–1120

    Article  PubMed  Google Scholar 

  38. Tramarin R, Torbicki A, Marchandise B, Laaban JP, Morpurgo M (1991) Doppler echocardiographic evaluation of pulmonary artery pressure in chronic obstructive pulmonary disease. A European multicentre study. Working Group on Noninvasive Evaluation of Pulmonary Artery Pressure. European Office of the World Health Organization, Copenhagen. Eur Heart J 12:103–111

    CAS  PubMed  Google Scholar 

  39. Masuyama T, Kodama K, Kitabatake A, Sato H, Nanto S, Inoue M (1986) Continuous-wave Doppler echocardiographic detection of pulmonary regurgitation and its application to noninvasive estimation of pulmonary artery pressure. Circulation 74:484–492

    Article  CAS  PubMed  Google Scholar 

  40. Ristow B, Ali S, Ren X, Whooley MA, Schiller NB (2007) Elevated pulmonary artery pressure by Doppler echocardiography predicts hospitalization for heart failure and mortality in ambulatory stable coronary artery disease: the heart and soul study. J Am Coll Cardiol 49:43–49

    Article  PubMed Central  PubMed  Google Scholar 

  41. Ulett KB, Marwick TH (2007) Incorporation of pulmonary vascular resistance measurement into standard echocardiography: implications for assessment of pulmonary hypertension. Echocardiography 24:1020–1022

    Article  PubMed  Google Scholar 

  42. Abbas AE, Fortuin FD, Schiller NB, Appleton CP, Moreno CA, Lester SJ (2003) A simple method for noninvasive estimation of pulmonary vascular resistance. J Am Coll Cardiol 41:1021–1027

    Article  PubMed  Google Scholar 

  43. Farzaneh-Far R, McKeown BH, Dang D, Roberts J, Schiller NB, Foster E (2008) Accuracy of Doppler-estimated pulmonary vascular resistance in patients before liver transplantation. Am J Cardiol 101:259–262

    Article  PubMed  Google Scholar 

  44. Galie N, Hoeper MM, Humbert M et al (2009) Guidelines for the diagnosis and treatment of pulmonary hypertension. The task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Respir J 34:1219–1263

    Article  CAS  PubMed  Google Scholar 

  45. Bossone E, Rubenfire M, Bach DS, Ricciardi M, Armstrong WF (1999) Range of tricuspid regurgitation velocity at rest and during exercise in normal adult men: implications for the diagnosis of pulmonary hypertension. J Am Coll Cardiol 33:1662–1666

    Article  CAS  PubMed  Google Scholar 

  46. Collins N, Bastian B, Quiqueree L, Jones C, Morgan R, Reeves G (2006) Abnormal pulmonary vascular responses in patients registered with a systemic autoimmunity database: pulmonary hypertension assessment and screening evaluation using stress echocardiography (PHASE-I). Eur J Echocardiogr 7:439–446

    Article  PubMed  Google Scholar 

  47. Grunig E, Barner A, Bell M et al (2011) Non-invasive diagnosis of pulmonary hypertension: ESC/ERS guidelines with updated commentary of the cologne consensus conference 2011. Int J Cardiol 154(Suppl 1):S3–S12

    Article  PubMed  Google Scholar 

  48. Hoeper MM, Bogaard HJ, Condliffe R et al (2013) Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol 62(25 Suppl):D42–D50

    Article  PubMed  Google Scholar 

  49. Bossone E, D’Andrea A, D’Alto M et al (2013) Echocardiography in pulmonary arterial hypertension: from diagnosis to prognosis. J Am Soc Echocardiogr 26:1–14

    Article  PubMed  Google Scholar 

  50. Himelman RB, Schiller NB (1992) Exercise Doppler: functional evaluation of right heart dynamics. Echocardiography 9:225–233

    Article  CAS  PubMed  Google Scholar 

  51. Mukerjee D, St George D, Knight C et al (2004) Echocardiography and pulmonary function as screening tests for pulmonary arterial hypertension in systemic sclerosis. Rheumatology (Oxford) 43:461–466

    Article  CAS  Google Scholar 

  52. Launay D, Mouthon L, Hachulla E et al (2007) Prevalence and characteristics of moderate to severe pulmonary hypertension in systemic sclerosis with and without interstitial lung disease. J Rheumatol 34:1005–1011

    PubMed  Google Scholar 

  53. Coghlan JG, Denton CP, Grunig E et al (2014) Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis: the DETECT study. Ann Rheum Dis 73:1340–1349

    Article  PubMed Central  PubMed  Google Scholar 

  54. Janosi A, Apor P, Hankoczy J, Kadar A (1988) Pulmonary artery pressure and oxygen consumption measurement during supine bicycle exercise. Chest 93:419–421

    Article  CAS  PubMed  Google Scholar 

  55. Bonow RO, Carabello BA, Kanu C et al (2006) ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the 1998 guidelines for the management of patients with valvular heart disease): developed in collaboration with the Society of Cardiovascular Anesthesiologists: endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. Circulation 114:e84–e231

    Article  PubMed  Google Scholar 

  56. Kuecherer HF, Will M, da Silva KG et al (1996) Contrast-enhanced Doppler ultrasound for noninvasive assessment of pulmonary artery pressure during exercise in patients with chronic congestive heart failure. Am J Cardiol 78:229–232

    Article  CAS  PubMed  Google Scholar 

  57. Tumminello G, Lancellotti P, Lempereur M, D’Orio V, Pierard LA (2007) Determinants of pulmonary artery hypertension at rest and during exercise in patients with heart failure. Eur Heart J 28:569–574

    Article  PubMed  Google Scholar 

  58. Alkotob ML, Soltani P, Sheatt MA et al (2006) Reduced exercise capacity and stress-induced pulmonary hypertension in patients with scleroderma. Chest 130:176–181

    Article  PubMed  Google Scholar 

  59. Pignone A, Mori F, Pieri F et al (2007) Exercise Doppler echocardiography identifies preclinic asymptomatic pulmonary hypertension in systemic sclerosis. Ann N Y Acad Sci 1108:291–304

    Article  PubMed  Google Scholar 

  60. Kasimir MT, Mereles D, Aigner C et al (2008) Assessment of pulmonary artery systolic pressures by stress Doppler echocardiography after bilateral lung transplantation. J Heart Lung Transplant 27:66–71

    Article  PubMed  Google Scholar 

  61. Grunig E, Mereles D, Hildebrandt W et al (2000) Stress Doppler echocardiography for identification of susceptibility to high altitude pulmonary edema. J Am Coll Cardiol 35:980–987

    Article  CAS  PubMed  Google Scholar 

  62. Grunig E, Janssen B, Mereles D et al (2000) Abnormal pulmonary artery pressure response in asymptomatic carriers of primary pulmonary hypertension gene. Circulation 102:1145–1150

    Article  CAS  PubMed  Google Scholar 

  63. Grunig E, Dehnert C, Mereles D et al (2005) Enhanced hypoxic pulmonary vasoconstriction in families of adults or children with idiopathic pulmonary arterial hypertension. Chest 128:630s–633s

    Article  PubMed  Google Scholar 

  64. Argiento P, Vanderpool RR, Mule M et al (2012) Exercise stress echocardiography of the pulmonary circulation: limits of normal and sex differences. Chest 142:1158–1165

    Article  PubMed Central  PubMed  Google Scholar 

  65. Syyed R, Reeves JT, Welsh D, Raeside D, Johnson MK, Peacock AJ (2008) The relationship between the components of pulmonary artery pressure remains constant under all conditions in both health and disease. Chest 133:633–639

    Article  PubMed  Google Scholar 

  66. Aduen JF, Castello R, Daniels JT et al (2011) Accuracy and precision of three echocardiographic methods for estimating mean pulmonary artery pressure. Chest 139:347–352

    Article  PubMed  Google Scholar 

  67. Chemla D, Castelain V, Humbert M et al (2004) New formula for predicting mean pulmonary artery pressure using systolic pulmonary artery pressure. Chest 126:1313–1317

    Article  PubMed  Google Scholar 

  68. Argiento P, Chesler N, Mule M et al (2010) Exercise stress echocardiography for the study of the pulmonary circulation. Eur Respir J 35:1273–1278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Voilliot D, Magne J, Dulgheru R et al (2014) Determinants of exercise-induced pulmonary arterial hypertension in systemic sclerosis. Int J Cardiol 173:373–379

    Article  PubMed  Google Scholar 

  70. Gargani L, Pignone A, Agoston G et al (2013) Clinical and echocardiographic correlations of exercise-induced pulmonary hypertension in systemic sclerosis: a multicenter study. Am Heart J 165:200–207

    Article  PubMed  Google Scholar 

  71. Kovacs G, Berghold A, Scheidl S, Olschewski H (2009) Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J 34:888–894

    Article  CAS  PubMed  Google Scholar 

  72. Grunig E, Tiede H, Enyimayew EO et al (2013) Assessment and prognostic relevance of right ventricular contractile reserve in patients with severe pulmonary hypertension. Circulation 128:2005–2015

    Article  PubMed  Google Scholar 

  73. Nishimura RA, Otto CM, Bonow RO et al (2014) 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Thorac Cardiovasc Surg 148:e1–e132

    Article  PubMed  Google Scholar 

  74. Magne J, Lancellotti P, Pierard LA (2013) Stress echocardiography and mitral valvular heart disease. Cardiol Clin 31:311–321

    Article  PubMed  Google Scholar 

  75. Douglas PS, Khandheria B, Stainback RF et al (2008) ACCF/ASE/ACEP/AHA/ASNC/SCAI/SCCT/SCMR 2008 appropriateness criteria for stress echocardiography: a report of the American College of Cardiology Foundation Appropriateness Criteria Task Force, American Society of Echocardiography, American College of Emergency Physicians, American Heart Association, American Society of Nuclear Cardiology, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance: endorsed by the Heart Rhythm Society and the Society of Critical Care Medicine. Circulation 117:1478–1497

    Article  PubMed  Google Scholar 

  76. Picano E, Frassi F, Agricola E, Gligorova S, Gargani L, Mottola G (2006) Ultrasound lung comets: a clinically useful sign of extravascular lung water. J Am Soc Echocardiogr 19:356–363

    Article  PubMed  Google Scholar 

  77. Jambrik Z, Monti S, Coppola V et al (2004) Usefulness of ultrasound lung comets as a nonradiologic sign of extravascular lung water. Am J Cardiol 93:1265–1270

    Article  PubMed  Google Scholar 

  78. Agricola E, Picano E, Oppizzi M et al (2006) Assessment of stress-induced pulmonary interstitial edema by chest ultrasound during exercise echocardiography and its correlation with left ventricular function. J Am Soc Echocardiogr 19:457–463

    Article  PubMed  Google Scholar 

  79. Fagenholz PJ, Gutman JA, Murray AF, Noble VE, Thomas SH, Harris NS (2007) Chest ultrasonography for the diagnosis and monitoring of high-altitude pulmonary edema. Chest 131:1013–1018

    Article  PubMed  Google Scholar 

  80. Pratali L, Cavana M, Sicari R, Picano E (2010) Frequent subclinical high-altitude pulmonary edema detected by chest sonography as ultrasound lung comets in recreational climbers. Crit Care Med 38:1818–1823

    Article  PubMed  Google Scholar 

  81. Frassi F, Pingitore A, Cialoni D, Picano E (2008) Chest sonography detects lung water accumulation in healthy elite apnea divers. J Am Soc Echocardiogr 21:1150–1155

    Article  PubMed  Google Scholar 

  82. Boussuges A, Coulange M, Bessereau J et al (2011) Ultrasound lung comets induced by repeated breath-hold diving, a study in underwater fishermen. Scand J Med Sci Sports 21:e384–e392

    Article  CAS  PubMed  Google Scholar 

  83. Pingitore A, Garbella E, Piaggi P et al (2011) Early subclinical increase in pulmonary water content in athletes performing sustained heavy exercise at sea level: ultrasound lung comet-tail evidence. Am J Physiol Heart Circ Physiol 301:H2161–H2167

    Article  CAS  PubMed  Google Scholar 

  84. Gargani L, Doveri M, D’Errico L et al (2009) Ultrasound lung comets in systemic sclerosis: a chest sonography hallmark of pulmonary interstitial fibrosis. Rheumatology (Oxford) 48:1382–1387

    Article  Google Scholar 

  85. Mebazaa A, Yilmaz MB, Levy P et al (2015) Recommendations management on pre-hospital and hospital of acute heart failure: a consensus paper of the Heart Failure Association of the European Society of Cardiology, the European Society of Emergency Medicine and the Society of Academic Emergency Medicine. Eur Heart J. doi:10.1093/eurheartj/ehv066

  86. Lancellotti P, Pellikka PA, Donal E et al (2016) Recommendations for the clinical use of stress echocardiography in non-ischemic heart disease: joint document of the European Association of Cardiovascular imaging and the American Society of Echocardiography. Eur Heart J Cardiov Imaging

    Google Scholar 

  87. MacNee W (1994) Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease. Part one. Am J Respir Crit Care Med 150:833–852

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekkehard Grunig PhD .

Table of Contents Video Companion

Table of Contents Video Companion

  • See in the section illustrative cases: case number 29 (diastolic dysfunction by Maria Joao Andrade MD, Carnaxide–Lisbon, Portugal), case number 31 (comets during exercise stress in heart failure patient), and case numbers 32–35 (pulmonary pressure in aortic stenosis).

  • See also in the section selected presentations: B-lines, in and out the stress echo lab.

  • Springer Extra Materials available at http://extras.springer.com/2015/978-3-319-20957-9

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing

About this chapter

Cite this chapter

Grunig, E., Picano, E. (2015). Right Heart Stress Echocardiography. In: Stress Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-319-20958-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20958-6_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20957-9

  • Online ISBN: 978-3-319-20958-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics